
The Simplest Questions About 
Adaptation That I Know

(and perhaps even some answers!)

Daniel M. Weinreich
Department of Ecology and Evolutionary Biology, and 

Center for Computational Molecular Biology

Brown University

Asst. Prof.
EEB & CCMB

1998

Ph.D. in
Molecular
Evolution

20072001

Postdoc in Microbial 
Evolutionary Genetics

200019831978

BS in Computer
Science

1992

Software
Engineer



As an Undergraduate I Studied 
Genetic Algorithms (1983)

• Requires
– Bitstring representation of all conceivable solutions
– Fitness function to evaluate all conceivable solutions

• Initialize population often with ~103 random strings.
• Iterate:

– Selection (e.g. fitness-proportional or tournament or greedy)
– Reproduction (crossover and/or mutation)

• Stop at some predetermined point.

John Holland (ca. 1980) 1975



Fitness Function
Bit Position

L … 4 3 2 1 Fitness

0 … 0 0 0 0 3.1

0 … 0 0 0 1 2.7

0 … 0 0 1 0 0.0

0 … 0 0 1 1 1.0

0 … 0 1 0 0 12.3

:. … :. :. :. :. :.

1 1 1 1 0 0.3

1 … 1 1 1 1 1.1

Mapping or lookup table from each solution to a non-negative number.



(Wright’s) Fitness Landscape
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(Wright 1932)
The L-dimensional hypercube (cf. Chris Marx’ talk 
last week; Haldane 1932).  Readily generalizes to 
more than two alleles at each locus.



I Was Fascinated
• Genetic Algorithms are an unsupervised search 

heuristic with some tremendous successes in 
computational applications. Of course also some 
failures, depending on the ruggedness of the 
fitness function.

• More importantly for me, this suggests that we can 
regard the staggering biology as the consequence 
of the Darwinian algorithm.  

• (Suggests a variant on the anthropic principle: 
biology represents solution to exactly those 
problems that are amenable to natural selection.)



BS in Comp Sci: Fork in the Road

or



Software Engineering Left Me 
Hungry…

(Not terribly satisfying intellectually.)



Can a computationally-
minded approach get 
intellectual traction in 

evolutionary genetics?



…Study Evolutionary Biology (1992)

• θ = 4Nμ = E(π)
(but where are the dynamics?)

• Δp = p(1 – p)s
(but where is the epistasis?)

Dick Lewontin

“Find ‘em and 
Grind ‘em School”



Microbial Experimental Evolution

• We can regulate and manipulate
– Population size
– Population density
– Mutation rate
– Recombination rate
– Environment
– Genome sequence

• We can practically
– Grow for 104 generations
– Preserve perfect historical archives for later analysis 

including fitness assays and whole genome 
sequencing

Bruce Levin Lin Chao Christina Burch

'Doing research in population biology without 
mathematical and/or computer simulation models is like 
playing tennis without a net or boundary lines'.

'For us, natural and not-so-natural selection is about dN/dt 
and not dN/dS.'



Fitness landscape:
Mutation rates 
Distribution of fitness effects
Epistasis

Dynamics of adaptation:
Population structure
Clonal interference
Multiple mutations

Environment + cellular 
architecture:
Regulatory networks
Proteins

Adaptation

Mutation and recombination rates?
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Epistasis
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Part I: Fitness Landscapes

A. How Can We Use Them?
B. What Are They Actually Like?
C. When Do They Fail Us?

Fitness landscape:
Mutation rates
Distribution of fitness effects
Epistasis



A Cartoon of the Problem



Evolution Changes Heritable 
Phenotypes
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Nucleotide Sequence Space Defines 
Many Mutationally Equivalent 

Trajectories (Here Assuming SSWM)
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(after Maynard-Smith 1970; see also Wright 1932)



One Question
Fi
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s

(After Wright 1932)

Is natural selection empirically constrained to
follow a subset of mutational trajectories to
reach high-fitness sequences?



Theoretical Digression



Sign Epistasis Limits
Selective Accessibility

(Weinreich et al. 2005)
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An Experiment



• Resistance via hydrolysis of lactam ring by β-
lactamase.

• TEM β-lactamases are the major source of 
plasmid-mediated β-lactam resistance.

• Five mutations in TEMwt jointly increase 
cefotaxime resistance 100,000-fold, and yield 
an allele called TEM*.

β-lactam Antibiotic Resistance

Penicillin (1946)
Cefotaxime (1992)



The Question:
• What is the topography of the fitness function
lying between TEMwt to TEM*?

– I used reverse genetics to construct each of the 25

= 32 alleles defined by all combinations of these
five mutations, and assayed the cefotaxime
resistance of each.

– On the premise that natural selection acts to
increase cefotaxime resistance, this defines the
fitness function between these two alleles.



The Data

Mutational State Resistance (μg/ml)

g4205a A42G E104K M182T G238S Allele Rep 1 Rep 2 Rep 3

– – – – – TEMwt 0.0884 0.0884 0.0884

– – – – + 1.41 1.41 1.41

– – – + – 0.0711 0.0884 0.0711

– – – + + 32.0 32.0 32.0

– – + – – 0.130 0.130 0.130

– – + – + 362. 362. 362.

:. :. :. :. :. :. :. :.

+ + + + – 1.41 1.41 2.0

+ + + + + TEM* 4096. 4096. 4096.



Four of the five mutations in 
TEM* exhibit sign epistasis

Mutation
Number of TEM alleles on which mean 

mutational effect on resistance is
Mean 

proportional 
increasePositive Negative Negligible

g4205a 8 2 6 1.4
A42G 12 0 4 5.9
E104K 15 1 0 9.7
M182T 8 3 5 2.8
G238S 16 0 0 1 × 103

(Weinreich et al. 2006)



Only 18 of 120 trajectories are 
selectively accessible

(Weinreich et al. 2006)



Sharp Bias in Probabilities of 
Realization among Accessible 

Trajectories

(Weinreich et al. 2006)

Reruns on 
the mutational 

tape of life



What About In Other Systems?
• Within a gene: Considerable sign epistasis

– Isopropyl Malate Dehydrogenase (Lunzer et al. 2005)
– Dihydrofolate Reductase (Lozovsky et al. 2009)
– Ancestral Hormone Receptors (Thornton lab)
– (How about a structural gene? E.g. β-tubulin?)

• Between genes: Less sign epistasis
– Methylotrophy (Marx lab)
– E. coli in minimal media (Cooper, Lenski labs)
– E. coli multidrug resistance (Gordo lab)
– (How about two genes whose products interact? E.g. 

DHFR and DHPS?)



Fitness Landscape Limitations
• Violations of SSWM (cf. Rouzine, Desai, Neher 

among others).  Cannot represent a population 
by just a single point.

• More sites.  (Table grows exponentially and 
predictions about trajectory realizations are 
conditioned on a known endpoint.)

• Varying environment including frequency 
dependence.  (We can encode a discrete 
environment in the fitness function but what’s its 
“mutational” model?  N.B. the reversing 
environment of Gore.)  





Part II: Environmental + 
Cellular Architecture

A. Protein Biology of β-Lactamase
B. ΦX174 Life History Evolution
C. Theory

1. Fisher’s Geometric Model
2. Metabolic Control Analysis } We’re funded here!

Environment + cellular 
architecture
Regulatory networks
Proteins



Thus Far We Have Ignored…

E. coli

Resistance

β-lactamase
Allele



…the underlying biology
Transcription

Degradation

Degradation

Degradation

AUG TAA

Native-form
Folding

Hydrolysis
Binding and

Inactivation of
Transpeptidase

Diffusion into
periplasm

β-lactamase
Allele

Resistance



[mRNA] = ftranscription(G)

[proteinunfolded] = gtranslation(ftranscription(G),G)

…
Resistance = z(y(…g(f(G),G),…G),G)

The Big Picture: Modeling Drug 
Resistance Evolution in Terms of 

Proximal Mechanisms

Alleles (G)
…



Nothing in Biology Makes Sense
Except in the Light of Evolution – Th. 

Dobzhansky, 1973



Nothing in Evolution Makes Sense
Except in the Light of Biology - A. Dean, 

2001

(Weinreich et al. 2006)
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Nothing in Evolution Makes Sense
Except in the Light of Biology - A. 

Dean, 2001

(Wang, Minasov and Shoichet 2002, Weinreich et al. 2006)(Wang et al. 2002; Weinreich et al. 2006)
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Life History Evolution in Phage

• Phage from φᾰγεῖν, to eat.
• (Bacterio)phage are a genome in 

a membrane but are metabolically 
inert.

• Discovered by Twort (1915) and 
d’Hérelle (1917).

• Fundamental discoveries in 
molecular genetics made with 
phage in the ’40’s.

• First genome sequenced (1997).
• Key top-down regulator of marine 

microbes.
100 nm



Lytic Phage Life Cycle



Decomposing Phage Growth Rate
• Bull et al. (2006) suggest that growth rate (w) is:

w = -x + kC(Be-L(d+w) – 1)

• Adsorption rate (k)
– Rate at which the phage attach to the bacteria

• Burst size (B)
– Number of phage that emerge from a lysed cell (for one infecting 

phage)
• Lag time (L)

– Amount of time between adsorption and lysis
• Phage death rate (x)
• Host Constants

– C is the host cell density
– d is the host cell death rate



Bulk Culture Assay
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(Weinreich and Knies, unpub)



Can We Characterize Burst Size and 
Lag Time for an Individual Phage?

THOUGHT EXPERIMENT
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Method

• In each of 60 wells we add 100µl host cells and 
on average ~½ phage particle.

• Every 30 seconds we 
titrate the total 
number of phage in 
the next well.

• Note that this is 
destructive sampling.



Sample Data
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notwithstanding

Late non-burster
signals high lag
time variance

Poisson Distributed

Fascinating problem: How to simultaneously estimate 
two distributions from temporal data?



RA Fisher’s Geometric Model 
of Adaptation

All traits are under stabilizing selection and all 
mutations are pleiotropic.



1. To be successful, a protein must perform a function 
(e.g. bind or catalyze), but it must also

– Successfully fold into its native form
– Avoid aggregation
– Avoid premature degradation

2. Intermediate trait values are often optimal (called 
‘stabilizing selection’).

3. Most mutations influence more than one trait (they 
act ‘pleiotropically’).



β-lactamase and Fisher
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Weinreich (2010)



What Can We Learn from Epistasis 
between Two Deleterious Mutations

Comparing fitness effects of deleterious mutations
singly with their effect in pairs appears to yield
insight into the phenotypic angle θ between them.



Mutations are additive 
in phenotype space: 

Make Two Assumptions…

Gaussian Fitness: 
Wz = Exp[-½s|Z|2]



…to Cash Out the Algebra

Given two mutations X and Y:
1. We can use reverse genetics to put X, Y and

X + Y on the wild-type background.
2. Given fitness values for all three genotypes

(X, Y and X + Y), we can compute θ between
X and Y.

WX+Y = Exp{ln[WX] + ln[WY] + 2⋅(ln[WX]⋅ln[WY])½⋅cosθ}



How Might This Work?

Site 1 Site 2 Site 3 Site 4 Site 5

Site 1 0 θ1,2 θ1,3 θ1,4 θ1,5

Site 2 θ1,2 0 θ2,3 θ2,4 θ2,5

Site 3 θ1,3 θ2,3 0 θ3,4 θ3,5

Site 4 θ1,4 θ2,4 θ3,4 0 θ4,5

Site 5 θ1,5 θ2,5 θ3,5 θ4,5 0



How Might This Work?

Site 1 Site 2 Site 3 Site 4 Site 5

Site 1 0 θ1,2 θ1,3 θ1,4 θ1,5

Site 2 θ1,2 0 θ2,3 θ2,4 θ2,5

Site 3 θ1,3 θ2,3 0 θ3,4 θ3,5

Site 4 θ1,4 θ2,4 θ3,4 0 θ4,5

Site 5 θ1,5 θ2,5 θ3,5 θ4,5 0



Inferences
• Extreme θ (≈ 0° or ≈ 180°)  Mutations X

and Y affect the same phenotypes. If many
mutations all have small pairwise values of θ,
then perhaps they don’t all need to be
characterized for phenotypic effects.

• θ ≈ 90°  Mutations X and Y affect
distinct phenotypes. If many mutations all
have pairwise values of θ ≈ 90°, then there must
be many phenotypes. (Formally, the vectors
corresponding to these many mutations together
form a basis of phenotype space whose
dimensionality is given by the number of positive
eigenvalues of the previous matrix.)



Metabolic Control Analysis

MCA predicts that deleterious mutations in pairs of genes will have 
patterns of epistasis reflecting network topology.  Can we use data on 
epistasis between deleterious mutations in pairs of genes to make 
inferences about network topology?  (Szathmáry 1993, Segre et al. 2005)





Part III: Dynamics of 
Adaptation

Recombination
1. Landscapes Solved in Linear Time with Sex
2. Crossing Fitness Valleys with 

Recombination: Whither the Landscape?

Dynamics of adaptation:
Population structure
Clonal interference
Multiple mutations



Genome Structure and the Benefit 
of Sex

(Watson, Weinreich and Wakeley 2010)

Locus 1 Locus 2 Locus 3 Locus 4 …    Locus g

WG = Πwi (thus, no epistasis among loci)
wi is rugged (thus, sharp sign epistasis within loci)

After a “long” time



Time Between Adjacent Peaks

(Carter and Wagner 2002, Iwasa et al 2004, Weinreich and Chao 2005)

µ = 10-5

s1 = -0.01
s2 = 0.10
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(Weinreich and Chao 2005)

µ = 10-5

s1 = -0.01
s2 = 0.10

N = 16

What about Recombination?



(Weinreich and Chao 2005)

µ = 10-5

s1 = -0.01
s2 = 0.10

N = 1024

Can we visualize
these trajectories?

What about Recombination?



Need to Track Frequencies
• Genotype frequencies?  Somewhat ugly because 

each difference equation depends on all four 
state variables.

• We’ve employed allele frequencies and linkage 
disequilibrium because it respects the genetics of 
mutation and recombination, which act atomically 
on loci and breakpoints between loci. 
– Δr pA = Δr pb = 0; Δr D = -r⋅D
– Δµ pA = µ(1 – 2pA); Δr D = -4D(1 – µ)µ



pA × D – space

Lewontin 1988

’

(See also Lewontin’s D’)

In general, how do recombination, mutation and selection 
determine what trajectory an evolving populations will 
follow? 



Recombination + Two Fitness 
Maxima

r = 0
s1 = -0.01
s2 = 0.10



Recombination + Two Fitness 
Maxima

r = 0
s1 = -0.01
s2 = 0.10



Recombination + Two Fitness 
Maxima

r = 0
s1 = -0.01
s2 = 0.10



Recombination + Two Fitness 
Maxima

Saddle fixed-point emerges when r > s2/(1 + s2); see 
also Crow and Kimura (1965).

●

r = 0.25
s1 = -0.01
s2 = 0.10



Recombination + Two Fitness 
Maxima

to pab = 1
to pAB = 1

Saddle fixed-point emerges when r > s2/(1 + s2); see 
also Crow and Kimura (1965).

●

r = 0.25
s1 = -0.01
s2 = 0.10



Recombination + Two Fitness 
Maxima

Can analytically locate the fixed points and approximate 
the corresponding boundaries between basins of attraction 
as a function of selection and recombination.

s1 = -0.01
s2 = 0.10



Whither the Fitness Landscape?
• Although the fitness landscape isn’t continuous, subject to 

SSWM assumptions it is predictive.  Why?  Because it’s a 
potential function, and the local gradient defines the 
direction an evolving population is likely to move.

• Is there a potential function over pA × D - space?  No. In 
point of fact our vector field (ΔpA, ΔD) corresponds to no 
potential function.  (Formally, ∂(ΔpA)/∂D ≠ ∂(ΔD)/∂pA.)

• Interestingly, violating SSWM appears to also render the 
fitness landscape less predictively useful because the fate 
of any lineage now depends on the fitnesses of whoever 
else is cosegregating.

• Speculate: Predictive population landscapes do not exist.



Fitness landscape:
Mutation rates
Distribution of fitness effects
Epistasis

Dynamics of adaptation:
Population structure
Clonal interference
Multiple mutations

Environment + cellular 
architecture:
Regulatory networks
Proteins

Adaptation
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