The rate of adaptation in large sexual populations

Daniel Weissman, Nick Barton

2/14/11

The question

- How fast can evolution go?
- What determines the rate?

What are the important parameters?

"Forces": mutation, recombination, drift, selection

- Mutation rates: $\sim 10^{-10}$? (*E. coli*), $\sim 10^{-4}$? (poliovirus)
- ▶ Recombination rates: 0? (TB), 10⁻⁸-0.5 (*Drosophila*)
- Numbers of organisms: $\sim 10^2$ (tiger), $\sim 10^{21}$ (*E. coli* in people)
- Selective coefficients: ???
- Genome sizes (L): $\approx 10^4$ (poliovirus), $\approx 3 \times 10^9$ (people)

How do these numbers combine?

What's the speed limit on adaptation?

Best/simplest case:

- 'big' rate of beneficial mutations $U \ (\propto L \mu)$
- all have advantage s, add together
- Constant population size N

speed of adaptation:

$$v = NUp_{fix}s$$

when mutations are rare:

$$v = 2NUs^2 \equiv v_0$$

Problem: "clonal interference"

Kao and Sherlock, 2008

 $p_{\text{fix}} \neq 2s$

Many mutations

Fundamental Theorem: v = varianceAsexual: $v \sim 2s^2 \log(N\sqrt{sU}) / \log^2(s/U)$ (Desai and Fisher, '07; Rouzine et al, '08)

Large recombination limit

(Many) unlinked loci $p_{\text{fix}} = 2s/\text{variance in reproductive value} = 2se^{-4v}$

$$\Rightarrow v = rac{1}{4}\mathfrak{W}(8NUs^2) = rac{1}{4}\mathfrak{W}(4v_0) \ pprox \left\{egin{array}{c} v_0(1-4v_0) & ext{for } v_0 \ll 1 \ rac{1}{4}\log(4v_0) & ext{for } v_0 \gg 1 \end{array}
ight.$$

Tightly linked loci

- How much does one beneficial mutant interfere with the ones around it?
- Mutations' fates determined while rare, interfere with others while common
 - \Rightarrow assume interfering sweep has logistic shape

Interference over time, genome

 $r/s = 10, 1, 10^{-1}, 10^{-2}, 10^{-3}$

Interference over genome integrated over time

interference dominated by $r\sim s$ $\int\int \left(1-rac{p_{\mathrm{fix}}}{2s}
ight) dt\,dr=2$

Multiple interfering sweeps?

Guess:

- don't interfere with each other
- effects on rare mutants multiply

$$\Rightarrow v = \frac{v_0}{1+2v_0/sR}$$

Works for up to moderate interference

 $s = .05, R = 1, N = 10^2, 10^3, 10^4, 10^5$ (moving down)

Combining close and far sweeps

$$v = v_0 \left(1 - \frac{2v}{sR} \right) e^{-4v} \text{ for } R \gg s, v_0 \not\gg sR, 1$$
$$v \approx v_0 \left(1 - \frac{2v_0}{sR} - 4v_0 \right) \text{ for } v_0 \ll sR, 1$$

For Rs < 1, interference mostly from few close sweeps, not many far sweeps

Works for up to moderate interference

purple: $N = 10^5$, $U = 10^{-4}$, R/s = 100gold: $N = 10^5$, $U = 5 \times 10^{-4}$, R/s = 100blue: $N = 10^5$, $U = 10^{-4}$, R/s = 10

Summary

- $v \approx v_0 \left(1 \frac{2v_0}{sR} 4v_0\right)$, where $v_0 = 2NUs^2$
 - works until strong interference, then logarithmic
- \blacktriangleright interference between closely linked sweeps dominates for Rs < 1
- viral and microbial adaptation may be recombination-limited

Next steps

- high interference regime
- distribution of selective coefficients
 - neutral mutations
- epistasis
- population structure