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Bacteria have many examples of social 
interaction

What prevents evolutionary cheating?

Cooperator

“Public good”

"cheater"

+

•Strength by numbers

•Secretion of  virulence factors

•Biofilm formation

•Quorum sensing



Cells in biofilms are embedded in a matrix of 
extracellular polymeric substances

How is polymer secretion robust to
"cheating"?

Bacteria (red) and glycoconjugate matrix (green).   
Courtesy T. Neu, UFZ Germany.
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Biofilm dynamics emerge from interactions 
among cells
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Gradients produce heterogeneous growth
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Xavier and Foster, PNAS (2007)
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Producers and cheaters compete within the 
biofilm



With oxygen gradients OFF
“cheaters” win

Xavier and Foster, PNAS (2007)
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With oxygen gradients ON
“cheaters” lose
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Extracellular polymers can work as a 
competitive trait

Cooperative trait

Open to exploitation

Competitive trait

Benefit own lineage

Xavier and Foster, PNAS (2007)





Swarming: collective motility in
Pseudomonas aeruginosa



Swarming: collective motility in
Pseudomonas aeruginosa



Swarming colonies have long range 
repulsion



Pseudomonas aeruginosa is a 
well established model

• Sequenced genomes

• Non-redundant libraries of transposon mutants

• Affymetric GeneChip microarrays 

• It is an opportunistic pathogen

• Forms biofilms in cystic fibrosis lungs that are hard 
to treat with antibiotics



Swarming benefits the colony but requires 
biosurfactant synthesis by cells

What prevents 
evolutionary 

cheating?



Biosurfactant synthesis is well 
characterized

Wild-type

rhlA-

(Non-cooperator)



Different genotypes are distinguishable 
using neutral colors
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Biosurfactants are a 
“public good”



Biosurfactant secretion is uncheatable

• Non-cooperators do 
better than when alone…

• Not enough to distinguish
who wins, WT or rhlA-

• …but at expense of wild-
type

Measured relative fitness:

0.99±0.05



rhlA expression is delayed until 
stationary phase
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P. aeruginosa
PA14 rhlAB-GFP



Quorum sensing is necessary yet 
not sufficient
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Expression of biosurfactant synthesis is 
favored at lower nitrogen source levels

Carbon source:    Glycerol (C3H5(OH)3)
Nitrogen source: (NH4)2SO4



rhlA regulation ensures
metabolic prudence

But only if  there’s a quorum
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Inducible rhlAB bypasses 
metabolic pudence mechanism

No inducer
(behaves like non-

cooperator)

Inducer present
(strict cooperator)



Biosurfactant secretion in strict cooperator 
is cheatable

Day 1 Day 2 Day 3 Day 4



Summary
Xavier et al. Mol Microbiol (2011) 79(1):166-79

• Bacteria rely on multicellular traits for many tasks

• Multicellular cooperative traits are open to exploitation… 

• …and therefore must have evolved with mechanisms for 
robustness

• We can find the mechanisms stabilizing bacterial 
multicellularity:

•Physical or biological mechanisms setting populations 
structure
•Molecular mechanisms (metabolic prudence, quorum 

sensing, more?)

• Can lead to new therapies
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