Life at the Single-Cell Level

Michael Elowitz HHMI/Caltech

Bacterial cells

Consider a small rod-shaped bacterium

Consider a small rod-shaped bacterium

Gene circuits involve specific interactions between genes and proteins

Gene circuits involve specific interactions between genes and proteins

Difficulties in Understanding Gene Circuits

Circuits are dynamic

Difficulties in Understanding Gene Circuits

- Circuits are dynamic
- Circuits are "noisy"

Difficulties in Understanding Gene Circuits

- Circuits are dynamic
- Circuits are "noisy"
- Circuit are complex

Approaches to Understanding Gene Circuits

- Use Synthetic Biology to Construct Simple Gene Circuits that Program Cellular Behavior
- Use Movies to Analyze Gene
 Circuits at the Single-Cell Level.
- Goal: Quantitative understanding of gene circuit design principles

Cells have evolved accurate clock circuits

Drosophila circadian clock

Is it possible to design a cellular clock?

The Repressilator: a synthetic genetic clock

with Stanislas Leibler

Simulated Repressilator Oscillates

Plasmids

Repressilator

Reporter

Repressilator movie

Repressilator movie

Improved Clocks

Stricker et al (Jeff Hasty lab, UCSD), Nature 2008

Repressilators and other synthetic circuits

Possible to design new behaviors in cells

But where does the variability come from?

How deterministic is the cell?

The thought experiment:

Now: two exactly identical cells

Later:
still identical?

Origins of Variability Are genetic circuits deterministic?

Expression level controls noise level

"Quiet"

$WT_{(RPR37)} + IPTG$

Decrease Expression 30-fold

"Noisy"

 $WT_{(RPR37)}$

Intensity = 1

 η_{int} = 0.063 (0.058-0.069)

 η_{ext} = 0.098 (0.09-1.1)

Intensity = 0.03

 $\eta_{int} = 0.25 (0.22-0.27)$

 η_{ext} = 0.32 (0.3-0.35)

Noise is evolvable

Delete recA gene

Intensity = 1 h_{int} = 0.063 (0.058-0.069) h_{ext} = 0.098 (0.09-1.1)

Intensity = 1.2 h_{int} = 0.17 (0.15-0.2) h_{ext} = 0.12 (0.088-0.14)

Noise is an evolvable trait

Noise: More than a Nuisance?

Bacillus subtilis differentiates probabilistically and transiently

G. Suel et al, Nature 2006, Science 2007; Catagay et al, Cell 2009

Bacillus subtilis

The Genetic Circuitry of Competence

Competence circuit diagram from Hamoen et al. Microbiology. 2003

A relatively simple core feedback circuit controls competence differentiation

Combination of fast positive and slow negative feedback loops

Mathematical Model of the Circuit

Excitability: A Design Principle for Probabilistic, Transient Differentiation

Other excitable systems in biology

Neuron (Action Potential)

Toilet (Flush)

Hypothesis: Noise (fluctuations) cause differentiation

Filaments: a simple way to reduce cellular noise

Longer cells fail to differentiate

What else can noise do?

Cells Use Signaling Circuits to Communicate

Ca²⁺ signaling regulates many processes in eukaryotic cells

Functionally similar to mammalian NF-AT.

See also: Stathopoulos and Cyert, Genes Dev. 1997, 1999, Matheos et al, Genes Dev. 1997

Crz1-GFP localization can be observed in individual cells

Movie of Crz1 After Ca²⁺ Addition

Crz1 Localizes in Stochastic Bursts

Calcium regulates the frequency, but not the duration, of bursts.

Crz1 encodes signals via Frequency Modulation (FM)

Frequency Modulation (FM)

- FM radio: Armstrong, 1933.
 - Less susceptible to noise
- Neurobiology: robust signal propagation
- Rocket thrusters: "Bang bang" control

Crz1 Target Genes Respond Differently to [Crz1]_{nuc}

AM Fails to Coordinate Expression

AM Fails to Coordinate Expression

AM Fails to Coordinate Expression

FM Coordinates Expression

FM Coordinates Expression

FM Coordinates Expression

Natural Target Genes Are Coordinately Regulated

Life at the Single-Cell Level...

- ...is noisy, dynamic, and complex. But...
- The dynamics of individual cells provides new insights into gene circuit design principles
- Design of synthetic gene circuits enables new cellular behaviors

Design and construction of genomes

Synthesizing a Functional Genome

A team led by J. Craig Venter has succeeded in creating a synthetic bacterial genome and using it to control a cell.

New York Times

An Expanded View of Biology

Potential Organisms

See Elowitz & Lim, Nature 2010

Acknowledgements

- Repressilator: Stanislas Leibler
- Noise: Peter Swain, E. Siggia, Arnold J. Levine
- Differentiation in Bacillus: Gurol Suel, Jordi Garcia-Ojalvo
- FM Signaling: Long Cai, Chiraj Dalal