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Hydrostatics

Only normal forces
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Horizontal temperature
gradient causes wind
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Horizontal temperature
gradient causes wind
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Atmospheric flows are driven by the gradients of solar heating.

Vertical gradients cause thermal convection on the scale of the
troposphere depth (less than 10 km).

Horizontal gradients excite motions on a planetary (10000 km)
and smaller scales.

Weather is mostly determined by the flows at intermediate
scale (hundreds of kilometers).

Where these flows get their energy from?

The puzzle is that three-dimensional small-scale motions
cannot transfer energy to larger scales while large-scale planar
motions cannot transfer energy to smaller scales.



Euler equation in 2d
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Two cascades in two dimensions

vorticity w = V x u is conserved

E = f ‘Vk‘gdk and () = f ‘k X Vk‘gdk
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Direct cascade Inverse cascade
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Kolmogorov energy cascade
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Right scaling

Wrong sign
for inverse cascade
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FIG. 1. The experimental set-up. ki 2z {om’)



We expect from turbulence
fragmentation, mixing and loss of coherence.

However,

an inverse turbulent cascade proceeds from small to
large scales and brings some self-organization and
eventually appearance of

acoherent system-size condensate.



M. G. Shats, H. Xia, H. Punzmann & G. Falkovich , Phys Rev Let 99, 164502 (2007);

Thin layer
Condensation in two-dimensional turbulence

Temporal development of turbulence in a thin layer
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FicUurg 1. Time-averaged velocity field of the condensate in the square box of L 22 0.10 m at
different thicknesses of the bottom fluid (Fluorinert FC-77): (a) Ahy = 3 mm, a = 0.3 s~ 1, (b)
Ahy =4 mm, & =0.15 s7" and (¢) Ahy =5 mm, o = 0.05 s~ ". (d) Decay of the total kinetic

energy for cases (a-c).
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Subtracting the mean flow

restores the sign
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Mean subtraction recovers isotropic turbulence
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Kolmogorov law — linear S3 (r) dependence in the “turbulence range”;

Kolmogorov constant C=7



Universal profile of a coherent vortex
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vV = (“Uq;},, ‘U.r) = (U +wu,v) with U(r),v(r, ¢, t), u(r, o, t)
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To understand atmosphere one needs to move from thin to thick layers
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Video 900 vortices ( 9 mm in diameter)
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H. Xia', D. Byrne', G. Falkovich? and M. Shats' NATURE PHYSICS, April 1, 2011



Vertical shear suppresses
vertical vortices
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Turbulence

Flow decay

Turbulence

% +F+ + - Nii

(t_to) = (5_10) S

|

p—




single layer
10°F 3 -2
"E, (m's (a)
' turbulence
74
10 + flow
10-81

10-°

10-10L

kfi
100 k(m™') 1000
S, (10°m’s”) (b)

turbulence
+ flow

AAAAAL,

A
A,
turbulence

- - 0
0.04 r(m) 0.08

double-layer

-6F
O Ei(m's” ©)
107]
108|
109 "

100 k(m™") 1000
2 I

'S, (107m’s™) (d)
1 -

0

0.04 r(m) 0.08



1076

107

108

10-9

g 10°° E
= N k5o k| o107 Ekss
N o -
N E ]
_ Mo Merre o
' :
Without vortex L With vortex
—— ' — 10° —— ' — "
100 1,000 100 1,000
k (m™T1) k(m™1)
4 —
- I
Sip = ((0Vy)”) o i
e=—(2/3)Ss/7 =Ll - T
I Opg
0 0.02 004 0.06

r(m)



Moral

A strong large-scale flow effectively suppresses fluctuations in
the vertical velocity.

The resulting flow is planar even at small scales yet it is three-
dimensional as it depends strongly on the vertical coordinate.

Turbulence in such flows transfers energy towards large scales.
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Figure 1. Satellite image of hurricane Isabel, 12" September 2003 with the flight track of the
WP-3D Orion aircraft (N43RF) overlaid. Stepped decent measurements of the boundary layer
performed between outer rain bands.

Three- to two-dimensional turbulence transition in the hurricane boundary layer
D. Byrne and A. Zhang, 2013



A transition from 3d to 2d turbulence from in-situ aircraft measurements
in the hurricane boundary layer
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Third order structure function of horizontal velocities for different flight-leg
heights in hurricane A) Isabel and B) Fabian.

These results represent the first measurement of the 2D upscale energy flux in the
atmosphere and also the first to characterize the transition from 3D to 2D. It is
shown that the large-scale parent vortex may gain energy directly from small-
scales in tropical cyclones.



Summary

Inverse cascades seems to be scale invariant (and
at least partially conformal invariant).

Condensation into a system-size coherent mode
breaks symmetries of inverse cascades.

Condensates can enhance and suppress fluctuations in
different systems. Spectral condensates of universal forms
can coexist with turbulence.

Small-scale turbulence and large-scale vortex can conspire
to provide for an inverse energy cascade.



Fluid Mechanics

The multi-disciplinary field of fluid mechanics is one of the most actively
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flow coherent over the system size (the condensate) ap-
pears [2,5,6,17-19] with the velocity estimated from the

energy balance, aV? = 2e, which gives s = V/L, =
L. '\J2€e/a and

k, = /1, = 7L, /> (Ca/2) 3/4€l/4, (1)
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After mean subtraction
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Before mean subtraction
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