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Qutline

» What is oscillatory double-diffusive convection?



Oscillatory double-diffusive convection

« Afluid that exhibits a stable compositional gradient alone
supports internal gravity waves.

» The addition of a small temperature gradient can destabilize
the wave (even if the background density of the system

remains stably stratified), as long as temperature diffuses
more rapidly than composition




Where is ODDC found?

e« On Earth:

ey

o Polar oceans: Melting ice releases cold/fresh water on top
of warmer, saltier water.

> Volcanic lakes: Geothermal activity warms bottom of lake &
releases methane/other dense gases below cold, fresh

water.
- Osclillatory-unstable (but not very much, see later)




Where is ODDC found?

» In Planetary Astrophysics:

- The core-accretion scenario for giant planet formation
leads to an interior structure potentially unstable to
oscillatory-convection near core-envelope interface.
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Mathematical modeling

Governing equations (Boussinesq approximation, cf. Spiegel &

\[gronis):
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» DD-convection scale much, much smaller than system scale,
so the Boussinesq (ie. nearly-incompressible fluid)
approximation is usually OK.



Mathematical modeling

Model considered:

(¢]

Assume background temperature and concentration profiles are
linear (constant gradien§_, 7,5, )

Let T(x,y,z,t)=zT,. +T(x,v,2,t) and S(x,y,2,t) = zS,. + S(x,y,2.t)
Assume that all perturbations are triply-periodic in domain

(LoLyL,):

This enables us to study the phenomenon with little influence

from bo Ies.
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Mathematical modeling

Governing non-dimensional equations:
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Linear theory (basic instability)

Linear stability analysis:
» Assume all perturbations are of the form
— 2 ikx+/t
q(x,y,z,t) =qe
» Resulting equation for growth rate is a cubic
[°+al”+bl +c=0
where coefficients are functions ((Pr, f,R(')l,k)

» Properties of the modes of instability
» Fastest-growing mode is vertically invariant, horizontal

wavelength is of the order of “a few d”

Pr+1 1.14 in ocean

. . . -1 )

» Range of instability i§ <R, < " — O(10%9) in astro
« Mode is oscillatory

» For weak stratification (near overturning convection), A5
S>>\,

» For strong stratification (close to marginal stability) Az <<A,



Linear theory (basic instability)

Overturning convection Stable system
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Outline

» Numerical simulations

100d x 100d x 100d
Ra = 108
Pr=1=0.01 or 0.03

A\'é‘)r._————-———————




Numerical simulations
Example of oscillatory convection close to onset of overturning
convection (more unstable case)
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Mirouh, Garaud, Stellmach, Traxler & Wood 2013



Numerical simulations

Example of oscillatory convection close to marginal stability
(more stable case)

S field u field

Moll et al, in prep. 2014



Numerical simulations

Two outcomes: layers & large-scale gravity wave, with very

different transport properties.
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Numerical simulations

In fact, we always see these two types of solutions.
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Numerical simulations

Schematically:

Overturning convection
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Outline

Mean-field theory for staircase formation
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Mean-field theory for layer formation

» The emergence of staircases in DD convection can be
understood using “mean-field” theory (Radko 2003)

» General idea: large-scale structures form through positive
feedback between large-scale temperature/composition
perturbation and induced fluxes.

temperature,

solute

. . Perturbations in
Perturbations in '
local inverse
turbulent fluxes . :
density ratio

» Different feedback loops can lead to different “mean-field”
instabilities, e.g. layering instability, large-scale gravity wave
excitation, intrusive instability (Traxler et al. 2011)




Mean-field theory for layer formation

» Horizontally-averaged, filtered equations (ignoring mean

flow): 7T IF.

2+ T =0

7/t 1z

o Assume that
F,=g'F,

where F; and Eparg Rijpifunctio

quantities:g.l = g} (R'LPr, 1)

ne Nnf nther non-dimenci

Standard closure problem:
iIf the fluxes are known, the
problem can be solved for
evolution of large-scale
fields.

nal

Assumed to be

known!

1. . . . .
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Mean-field theory for layer formation

» Summary of closed model

g

W 5 o) 7 Q0 — -1,
m_s _ FT:NuTS]'_ d_T_: Nu, = Nu,(R*;Pr, t)

_ 7/5 1z | dz ¢ _g‘lzg'l(R'l;pr,[)
B g F=9'F L RS
e b KT

» This set of nonlinear equations has a trivial solution

T =8=0, F,,F,areconstant,
This is the homogeneous

7 R*'=R;'is constant, _
ODDC solution

Nu, = Nu,, g'l =g{)1



Mean-field theory for layer formation

« Summary of closed model

—E_+ﬂ£:0 FT :NuTg_ d_TE —NuT :NuT(R'l;Pr,l‘)

B . dzg | g'=g' (R%Pr,t)
B g F=g'F, L _R'-5§
S - KTT
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» This set of nonlinear equations has a trivial solution
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Mean-field theory for layer formation

» Consider large-scale, small-amplitude perturbations to that

state 1
R _ R, S
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Mean-field theory for layer formation

Radko’sy-instability criterion: A necessary condition
for the yinstability is that the flux ratio should be a
decreasing function of density ratio

-1
dg <0
dR™*
The layering instability
triggers staircase \ \
formation
» Modes of instability are .
horizontally invariant, -

vertically sinusoidal
perturbations in
temperature/composition/den
Sity. \
» The mode overturns into a

staircase when amplitude is



Comparison with simulations

» To test this theory:
o Measure flux ratio in homogeneous phase of ODDC
o Check the sign ofL

Yot
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Comparison with simulations

» To test this theory:
o Measure flux ratio in homogeneous phase of ODDC

o Check the sign ofji
R

> Pick a simulation, calculate predicted growth rate, compare
with actual growth rate.
10°

Spectral power in density

0 500 1000 1500 2000

t Mirouh et al. 2012



Qutline

e Numerical simulations
Mean-field theory for staircase formation

Wave/mean-flow interaction for shear layer
formation

u field



Wave/mean-flow interactions: which
one?

» Given that saturated ODDC consists in strongly dissipative,
nonlinearly interacting gravity waves, the emergence of
persistent shear flows is not surprising.. (cf. talk by Oliver)

e The question lies in origin of the mean flow. Is it:
1.

2. Small-scale ODDC modes =» mean flow (e.g. can be
described by mean-field instability)

3. Large-scale sheared ODDC mode = Reynolds stresses =»
mean flow (e.g. can be described by quasilinear theory)



Definition

e |n all that follows, we
define: k=l m, k)
_2p _2p nk = 20

X y z

« Examplelot g fiow)

Shearing modes have a
structure of the kindk =(0,0,%,)




Energies

The kinetic energy in the shearing modes grows exponentially
with nearly constant growth rate for a long time...
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Mean-field instability?

By analogy with the y-instability:
 Horizontally-averaged, filtered equations (ignoring

dBmpitsition):

t 9z
T IE, _
F. =N - —=
g uTgl dz ¢

o Assume that
F,=SF,

Where Nu; and the new function anow depend both on the
Inverse density rgt_io R-1and local non-dimensional shearing

rate: B \/pr(R('Jl_ 1)

ﬂ_5>0

14
End up “orovina” that shear can arow provided



Mean field instability ?

Testing the theory:

» Slight problem: by contrast with layering case, we do not
have a code that can easily maintain a constant backgrounds (1
shear to measure In idealized homogeneous sheared
ODDC.

» Alternative solution: start from a simulation already in
homogeneous ODDC, and gradually increase (periodic)
shear using external forcing.



Mean field instability ?

Testing the theory:

» Slight problem: by contrast with layering case, we do not
have a code that can easily maintain a constant backgrounds (1
shear to measure In idealized homogeneous sheared
ODDC.

» Alternative solution: start from a simulation already in
homogeneous ODDC, and gradually increase (periodic)
shear usindeextereal forcing. Concentration field

Wityut. sQear. .
»

' 4

With shear




Mean field instability ?

Testing the theory:
» At each position in space, each snapshot in time, meas(ae

()
0.01 r )
0.005 }
S(z) ot .
-0.005 | }
{ﬁ - —
-0.01 r Possible range of instability T
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Mean field instability ?

Testing the theory:

v

v

For small enough shearing rate, it looks like the “o-"instability
can be excited.

Sincefls /TV is more or less constant in that range, this
explains why the growth rate of shearing mode is constant.

Instability has self-regulating properties

The growth rate of the (0,0,k,) mode is observed to be the
same as (0,0,k;) which contradicts the “anti-diffusive” nature
of instability. s(V

Theory needs to be tested further by (1) measuring more
systematically and (2) calculating the actual mode growth
rates & comparing them with simulations.



Quasilinear theory ?

ldea;

Shear flow modifies
basic ODDC
instability

8

Reynolds stresses
Induced by
perturbations
accelerate shear
flow.
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Quasilinear theory ?

» For sinusoidal “background” shear of the kind

u =u,sin(kz)e.
we can use Floquet theory to calculate properties of the
perturbations.

Growth rate

We find that for
observed shearing =
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growth rate.
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Quasilinear theory ?

» To see if mode can amplify background shear:

( [ ﬂvT/dx)dz

f dz fuPr—dz f

_Prf(

Nonlinear term
strictly positive
for a wide
range of [!

Nonlinear term

Gu) de+
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0.001

0.0001 |4
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Quasilinear theory ?

Slight problem with the theory:

» Within the scope of the quasilinear theory (so far)
o Growth rate symmetric in |
> Nonlinear term antisymmetric in |

Growth rate

= - up =0.001 ——
o Uy = 0.01
= = 2 2 0.001 | 0= 0.1 e ]
T - u0=1 S -
——
E  0.0001 |J 1
g
I
[0}
=
5
2 1e-05 :
1606 ii i &
T I L ‘
o O
1 ‘ 0 0.2 0.4 0.6 0.8
H
|

> We expect as many modes with positive | and negative
|, and the total effect of Reynolds stresses should
cancel out.



Quasilinear theory ?

» However: the nonlinear terms in actual simulation are clearly
mostly positive the whole time so positive | modes are
preferred. oz

0.2 r

Nonlinear term ———
(0,0,kq) -+eeeeeeee

0.15 |

0.1 r

0.05

0t

-0.05

_0.1 1 1 1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 110(

time

» Question: What causes the asymmetry?

NOtei.thﬁ%Q%t'on IS diractly re This remains an open
Why is forsmall  ? | problem ...




Summary

» ODDC exhibits examples of strong interactions between
small-scales and large-scales.

Overturning Double-diffusive
convection Layered CO”\Q?&IH%E}ered (wave-like)
s, <0 OQORRA A A .
i 'OO CO!
. = Pr+1 To.
o =1 R'=R b o

» Mean-field theory (they—instability) satisfactorily explains
layer formation for weakly stratified ODDC systems

» Shear layers are observed to form in low Pr, “strongly”
stratified ODDC systems

» Candidates for shear layer formation have been identified:

o “ g—instability” (requires scale separation between large
and small scales)

o Quasilinear theory (does not require scale separation)



Summary

Both kinds of mean-
field/mean flow
Instabilities have
Important implications
for giant planet
structure, evolution,
dynamics.




Final side-note

Note: similar dynamics are seen in fingering convection, but
only in 2D (not in 3D)... why that is the case is another
Interesting question!

Garaud & Brummell, in prep.
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Weakly nonlinear theory ?
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Weakly nonlinear theory ?

Requires matching of spatial mode structure:

kP + k@ =k® N
l(l) +l(2) =0> 1(2) - l(l)
mP +m® =0 m® =-m

k(l) +k(2) — k(S)

Examples of “triplets”:

(1)

(£9,0,k9) +(19,0,k5”) = (0,0,
(1£9,0,k8) +(19,0,K87) =(0,0,4)



Weakly nonlinear theory ?

Oscillation frequencies do not match, but this is not a
problem given that this is not a steady-state shear
flow. In fact, we expect that from

(ﬂ +u® . Vu(z)) =Prvu
Tt

Ubar should grow (more or less) with sum of growth
rates of modes (1) and (2):

/(S) » /(1) _|_/(2)



Weakly nonlinear theory ?
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Weakly nonlinear theory ?
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Weakly nonlinear theory ?
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Weakly nonlinear theory ?
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Weakly nonlinear theory ?
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Weakly nonlinear theory? Probably not.

Oscillation frequencies do not match, but this is not a
problem given that this is not a steady-state shear
flow. In fact, we expect that from

(@ +u®. Vu(z)j =PrvVu
Tt

Ubar should grow (more or less) with sum of growth
rates of modes (1) and (2):

/(S) » /(1) _|_/(2)
Problem : none of the observed triplets seem to work
out...



