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Outline

 What is oscillatory double-diffusive convection?

 Numerical simulations

 Mean-field theory for staircase formation

 Wave/mean-flow interaction for shear layer 

formation



 A fluid that exhibits a stable compositional gradient alone 

supports internal gravity waves.

 The addition of a small temperature gradient can destabilize 

the wave (even if the background density of the system 

remains stably stratified), as long as temperature diffuses 

more rapidly than composition

Oscillatory double-diffusive convection



Where is ODDC found? 

 On Earth: 

◦ Polar oceans: Melting ice releases cold/fresh water on top 

of warmer, saltier water.

◦ Volcanic lakes: Geothermal activity warms bottom of lake & 

releases methane/other dense gases below cold, fresh 

water.

◦ Oscillatory-unstable (but not very much, see later)



Where is ODDC found? 

 In Planetary Astrophysics:

◦ The core-accretion scenario for giant planet formation 

leads to an interior structure potentially unstable to 

oscillatory-convection near core-envelope interface.

Core formation Gas accretion



Governing equations (Boussinesq approximation, cf. Spiegel & 

Veronis):

 DD-convection scale much, much smaller than system scale, 

so the Boussinesq (ie. nearly-incompressible fluid) 

approximation is usually OK.
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Mathematical modeling

Model considered:

◦ Assume background temperature and concentration profiles are 

linear (constant gradients                   )

◦ Let

◦ Assume that all perturbations are triply-periodic in domain 

(Lx,Ly,Lz):

◦ This enables us to study the phenomenon with little influence 

from boundaries. 
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Governing non-dimensional equations:

Mathematical modeling
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Linear stability analysis: 

 Assume all perturbations are of the form 

 Resulting equation for growth rate is a cubic

where coefficients are functions of 

 Properties of the modes of instability

 Fastest-growing mode is vertically invariant, horizontal 

wavelength is of the order of “a few d” 

 Range of instability is 

 Mode is oscillatory

 For weak stratification (near overturning convection), λR

>>λI

 For strong stratification (close to marginal stability) λR <<λI

Linear theory (basic instability)
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1.14 in ocean, 

O(103-6) in astro



Linear theory (basic instability)

Overturning convection
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S0z < 0

Stable system
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Outline

 What is oscillatory double-diffusive convection?

 Numerical simulations

 Mean-field theory for staircase formation

 Wave/mean-flow interaction for shear layer 

formation

100d x 100d x 100d

Ra = 108

Pr = τ= 0.01 or 0.03



Numerical simulations

Example of oscillatory convection close to onset of overturning 

convection (more unstable case)

Mirouh, Garaud, Stellmach, Traxler & Wood 2013

   

Nu =
Total flux

Diffusive flux

S field



Numerical simulations

Example of oscillatory convection close to marginal stability 

(more stable case)

Moll et al, in prep. 2014

S field u field



Numerical simulations

Two outcomes: layers & large-scale gravity wave, with very 

different transport properties.
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Numerical simulations

In fact, we always see these two types of solutions. 
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Numerical simulations

Schematically: 

Overturning convection
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Mean-field theory for layer formation

 The emergence of staircases in DD convection can be 

understood using “mean-field” theory (Radko 2003)

 General idea: large-scale structures form through positive 
feedback between large-scale temperature/composition 
perturbation and induced fluxes.

 Different feedback loops can lead to different “mean-field” 
instabilities, e.g. layering instability, large-scale gravity wave 
excitation, intrusive instability (Traxler et al. 2011)

Large-scale 

temperature, 

solute 

perturbations

Perturbations in 

local  inverse 

density ratio 

Perturbations in 

turbulent fluxes



Mean-field theory for layer formation

 Horizontally-averaged, filtered equations (ignoring mean 

flow):

 Assume that

where FT and FS are only functions of other non-dimensional 

quantities:

and R-1 is the local inverse density ratio (a function of z)
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Mean-field theory for layer formation

 Summary of closed model 

 This set of nonlinear equations has a trivial solution

¶T

¶t
+

¶FT

¶z
= 0     

¶S

¶t
+

¶FS

¶z
= 0

FT = NuT 1-
dT

dz

æ

è
ç

ö

ø
÷

FS = g -1FT

NuT = NuT (R-1;Pr,t )

g -1 = g -1(R-1;Pr,t )

R-1 =
R0

-1 - Sz

1-Tz

T = S = 0,   FT , FS  are constant, 

R-1 = R0

-1  is constant, 

NuT = Nu0,   g -1 = g0

-1

This is the homogeneous 

ODDC solution



Mean-field theory for layer formation

 Summary of closed model 

 This set of nonlinear equations has a trivial solution
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 Consider large-scale, small-amplitude perturbations to that 

state:

 The evolution of the compositional field is given by 

 To lowest order, 

Mean-field theory for layer formation
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Mean-field theory for layer formation

Radko’sγ-instability criterion: A necessary condition 

for the γinstability is that the flux ratio should be a 

decreasing function of density ratio

   

dg-1

dR-1
< 0

The layering instability 
triggers staircase 
formation 

 Modes of instability are 
horizontally invariant, 
vertically sinusoidal 
perturbations in 
temperature/composition/den
sity. 

 The mode overturns into a 
staircase when amplitude is 
large enough.



Comparison with simulations

Mirouh et al. 2012

 To test this theory:

◦ Measure flux ratio in homogeneous phase of ODDC

◦ Check the sign of 
dg -1

dR-1

Large symbols : 

simulations that 

exhibit layer-

formation.

Small symbols: 

simulations that do 

not.



Comparison with simulations

Mirouh et al. 2012

 To test this theory:

◦ Measure flux ratio in homogeneous phase of ODDC

◦ Check the sign of

◦ Pick a simulation, calculate predicted growth rate, compare 

with actual growth rate.

dg -1

dR-1
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 Numerical simulations

 Mean-field theory for staircase formation

 Wave/mean-flow interaction for shear layer 

formation

u field



Wave/mean-flow interactions: which 

one?

 Given that saturated ODDC consists in strongly dissipative, 

nonlinearly interacting gravity waves, the emergence of 

persistent shear flows is not surprising.. (cf. talk by Oliver)

 The question lies in origin of the mean flow. Is it: 

1. Large-scale ODDC mode + large-scale ODDC mode 

mean flow ? (e.g. can be described by reduced system of 

fully nonlinear equations)

2. Small-scale ODDC modes  mean flow (e.g. can be 

described by mean-field instability)

3. Large-scale sheared ODDC mode  Reynolds stresses 

mean flow (e.g. can be described by quasilinear theory) 



 In all that follows, we 

define:

 Example of a flow 

dominated by mode                  

:  

Definition

k = (l, m, k)

ln =
2p

Lx

n,  mn =
2p

Ly

n,  kn  =
2p

Lz

n 

k = (l1, 0,k2 )

Shearing modes have a 

structure of the kind k = (0,0,kn )



The kinetic energy in the shearing modes grows exponentially 

with nearly constant growth rate for a long time…

Energies

Note drop 

in heat 

flux



Mean-field instability? 

By analogy with the γ-instability: 

 Horizontally-averaged, filtered equations (ignoring 

composition):

 Assume that

Where NuT and the new function σnow depend both on the 

inverse density ratio R-1 and local non-dimensional shearing 

rate:

End up “proving” that shear can grow provided  
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Mean field instability ? 

Testing the theory:

 Slight problem: by contrast with layering case, we do not 

have a code that can easily maintain a constant background 

shear to measure       in idealized homogeneous sheared

ODDC. 

 Alternative solution: start from a simulation already in 

homogeneous ODDC, and gradually increase (periodic) 

shear using external forcing. 

s (V )



Mean field instability ? 

Testing the theory:

 Slight problem: by contrast with layering case, we do not 

have a code that can easily maintain a constant background 

shear to measure       in idealized homogeneous sheared

ODDC. 

 Alternative solution: start from a simulation already in 

homogeneous ODDC, and gradually increase (periodic) 

shear using external forcing. 

s (V )

Without shear With shear



Mean field instability ? 

Testing the theory:

 At each position in space, each snapshot in time, measure         

and

s (z)

V (z)

s (z)

V (z)

Possible range of instability



Mean field instability ? 

Testing the theory:

 For small enough shearing rate, it looks like the “σ-”instability 

can be excited. 

 Since           is more or less constant in that range, this 

explains why the growth rate of shearing mode is constant. 

 Instability has self-regulating properties

✗ The growth rate of the (0,0,k2) mode is observed to be the 

same as (0,0,k1) which contradicts the “anti-diffusive” nature 

of instability. 

✗ Theory needs to be tested further by (1) measuring         more 

systematically and (2) calculating the actual mode growth 

rates & comparing them with simulations. 
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Quasilinear theory ?

Idea:

Shear flow modifies 

basic ODDC 

instability

Reynolds stresses 

induced by 

perturbations 

accelerate shear 

flow.



 For sinusoidal “background” shear of the kind

we can use Floquet theory to calculate properties of the 

perturbations.

u = u0 sin(k1z)ex

Quasilinear theory ?
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For “large” shearing 

rates, the perturbation 

are localized in region 

of little shear.   z



Quasilinear theory ?

 To see if mode can amplify background shear: 

Nonlinear term 

strictly positive 

for a wide 

range of l!



Quasilinear theory ?

Slight problem with the theory:

 Within the scope of the quasilinear theory (so far)

◦ Growth rate symmetric in l

◦ Nonlinear term antisymmetric in l

◦ We expect as many modes with positive l and negative 

l, and the total effect of Reynolds stresses should 

cancel out.  
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Quasilinear theory ?

 However: the nonlinear terms in actual simulation are clearly 

mostly positive the whole time so positive l modes are 

preferred.

 Question: What causes the asymmetry?

Note: this question is directly related to

Why is            for small    ? 

¶s

¶V
> 0 This remains an open 

problem …

V



Summary 

 ODDC exhibits examples of strong interactions between 
small-scales and large-scales.

 Mean-field theory (theγ–instability) satisfactorily explains 
layer formation for weakly stratified ODDC systems

 Shear layers are observed to form in low Pr, “strongly” 
stratified ODDC systems

 Candidates for shear layer formation have been identified:

◦ “ σ–instability” (requires scale separation between large 
and small scales)

◦ Quasilinear theory (does not require scale separation)
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Summary

Both kinds of mean-

field/mean flow 

instabilities have 

important implications 

for giant planet 

structure, evolution, 

dynamics.



Note: similar dynamics are seen in fingering convection, but 

only in 2D (not in 3D)… why that is the case is another 

interesting question!

Final side-note

Garaud & Brummell, in prep. 
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Weakly nonlinear theory ?



Weakly nonlinear theory ?

Requires matching of spatial mode structure:

Examples of “triplets”: 

k
(1) +k(2) = k(S ) ®

l (1) + l (2) = 0® l (2) = -l (1)

m(1) + m(2) = 0®m(2) = -m(1)

k (1) + k (2) = k (S )

l1
(1), 0, k-2

(1)( ) + l-1

(2), 0, k3

(2)( ) = 0, 0, k1

(S)( )
l1

(1), 0, k-1

(1)( ) + l-1

(2), 0, k2

(2)( ) = 0, 0, k1

(S)( )



Weakly nonlinear theory ?

Oscillation frequencies do not match, but this is not a 

problem given that this is not a steady-state shear 

flow. In fact, we expect that  from

Ubar should grow (more or less) with sum of growth 

rates of modes (1) and (2):
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Weakly nonlinear theory ?



Weakly nonlinear theory ?



Weakly nonlinear theory ?



Weakly nonlinear theory ?



Weakly nonlinear theory? Probably not.

Oscillation frequencies do not match, but this is not a 

problem given that this is not a steady-state shear 

flow. In fact, we expect that  from

Ubar should grow (more or less) with sum of growth 

rates of modes (1) and (2):

Problem : none of the observed triplets seem to work 

out…  
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