
Large-scale vortices in rapidly rotating
Rayleigh-Bénard convection
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Large-scale vortices in convective layers
• Numerical models of rotating compressible thermal convection in a local f-plane model

(Chan 2007, Chan & Mayr 2013, Käpylä et al. 2011, Mantere et al. 2011): long-lived,
box-size vortices for large rotation rate and near the poles.

cyclone:
negative temperature anomaly

anticyclone:
positive temperature anomaly

• Reduced model of Boussinesq convection in a local Cartesian domain in the limit of small
Rossby number (Julien et al. 2012): depth-invariant box-size vorticity dipole, increases the
efficiency of the heat transfer

depth-averaged axial vorticity
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Outline

1. Structure of large-scale vortices in rotating Boussinesq convection

2. Domain of existence in parameter space

3. Cyclone/anticyclone asymmetry

4. Energy transfer to large scales

5. Effect on the heat transfer
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Rotating Rayleigh-Bénard convection

• 3D Cartesian layer of Boussinesq fluid

• periodic in the horizontal directions

• rotating about the vertical axis, rotation rate: Ω

• temperature difference between top (cold) and bottom
(hot): ∆T

• aspect ratio between horizontal/vertical box sizes: λ

∂u

∂t
+ u · ∇u +

Pr

Ek
ez × u = −∇p + Pr Ra θez + Pr∇2u,

∇ · u = 0,

∂θ

∂t
+ u · ∇θ = uz +∇2θ.

Boundary conditions:
θ = 0,

uz = 0,
∂ux

∂z
=
∂uy

∂z
= 0.

Input parameters:

Ra =
αg∆Td3

κν
, Pr =

ν

κ
= 1, Ek =

ν

2Ωd2
.
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Emergence of the large-scale vortices
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R̃a = 17

R̃a = 34

(in units of 1/2Ω)

R̃a = RaEk4/3

Ek = 5× 10−6

λ = 1

slow growth of the kinetic

energy for R̃a = 34 and
saturation after about
10% of the global viscous
timescale

Horizontal and vertical cross-sections of the axial vorticity:
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• vortex aligned with rotation axis and mostly z-invariant
• grows to the largest horizontal scale permitted
• periodic horizontal boundary conditions: horizontal average of ωz is zero
• consists essentially of horizontal motions
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1 Movie: horizontal cross-section of the axial vorticity
starting after the development of the convective
instability

(parameters: Ek = 10−4, R̃a = 37, λ = 4)

Slow growth of the kinetic energy ⇒ formation of a
large-scale vortex

Horizontal and vertical cross-sections of the axial vorticity:
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Evolution of the velocity

Roz =
〈u2

z 〉1/2

2Ωd
and Ro =

〈u2
x + u2

y + u2
z 〉1/2

2Ωd
.

S1: Ek = 10−4, λ = 1
S2: Ek = 10−4, λ = 2
S3: Ek = 10−4, λ = 4
S4: Ek = 10−5, λ = 1
S5: Ek = 5× 10−6, λ = 1
R̃a = RaEk4/3
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Roz increases monotonically with R̃a, always smaller than 0.1, does not depend on λ

Ro decreases in series S2–S3 for R̃a & 150, depends on λ

The amplitude of the horizontal flows does not follow the evolution of the amplitude
of the vertical flows.

6/21



Evolution of the velocity

Roz =
〈u2

z 〉1/2

2Ωd
and Ro =

〈u2
x + u2

y + u2
z 〉1/2

2Ωd
.

S1: Ek = 10−4, λ = 1
S2: Ek = 10−4, λ = 2
S3: Ek = 10−4, λ = 4
S4: Ek = 10−5, λ = 1
S5: Ek = 5× 10−6, λ = 1
R̃a = RaEk4/3

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

 

 

S1
S2
S3
S4
S5

R̃a

R
o
z

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

 

 

S1
S2
S3
S4
S5

R̃a
R
o

Roz increases monotonically with R̃a, always smaller than 0.1, does not depend on λ

Ro decreases in series S2–S3 for R̃a & 150, depends on λ

The amplitude of the horizontal flows does not follow the evolution of the amplitude
of the vertical flows.

6/21



Domain of existence

Comparison of the amplitudes of horizontal flows with vertical flows:

Γ =
〈u2

x + u2
y + u2

z 〉
3〈u2

z 〉
=

Ro2

3Ro2
z
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Γ

S1: Ek = 10−4, λ = 1
S2: Ek = 10−4, λ = 2
S3: Ek = 10−4, λ = 4
S4: Ek = 10−5, λ = 1
S5: Ek = 5× 10−6, λ = 1
R̃a = RaEk4/3

• Γ > 1 for R̃a & 20 (onset of convection: R̃a = 8.8)

• Γ decays for large thermal forcings
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Domain of existence: emergence

Measure of the level of turbulence of the convective flow:

Rez =
Roz

Ek
=
〈u2

z 〉1/2d

ν
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S1: Ek = 10−4, λ = 1
S2: Ek = 10−4, λ = 2
S3: Ek = 10−4, λ = 4
S4: Ek = 10−5, λ = 1
S5: Ek = 5× 10−6, λ = 1
Γ = Ro2/(3Ro2

z )

• Sharp increase of Γ for Rez ≈ 300 for λ = 1 and for Rez ≈ 100 for λ = 4
• Decrease of Γ occurs at increasing values of Rez for decreasing Ek → due to a

transition from a rotationally-dominated convection regime to a weakly-rotating
convection regime?
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Domain of existence: decay

Measure of the influence of rotation on a flow:

Ro l
z =
〈u2

z 〉1/2

2Ωlh
=

Roz

lh/d
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z )

• Ro l
z monotonically increases with R̃a

• decrease of Γ occurs for a similar value of Ro l
z , about 0.15

9/21



Domain of existence: decay

Measure of the influence of rotation on a flow:

Ro l
z =
〈u2

z 〉1/2

2Ωlh
=

Roz

lh/d

10
−2

10
−1

10
0

10
1

 

 

S1
S2
S3
S4
S5

Ro
l

z

Γ

S1: Ek = 10−4, λ = 1
S2: Ek = 10−4, λ = 2
S3: Ek = 10−4, λ = 4
S4: Ek = 10−5, λ = 1
S5: Ek = 5× 10−6, λ = 1
Γ = Ro2/(3Ro2

z )

• Ro l
z monotonically increases with R̃a

• decrease of Γ occurs for a similar value of Ro l
z , about 0.15

9/21



Domain of existence: effect of the aspect ratio

Horizontal cross-sections of the axial vorticity at z = 0.25 (Ek = 10−4, R̃a = 37):
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Domain of existence: effect of the aspect ratio

Kinetic energy spectrum in the horizontal directions with kh = (k2
x + k2

y )1/2

(Ek = 10−4, R̃a = 37):
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• Kinetic energy spectra show that the horizontal flow is dominated by the smallest
permitted horizontal wavenumber, for all λ.

• As λ increases, the amplitude of the smallest horizontal wavenumber becomes
larger.
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Domain of existence: Summary

1. Significant level of convectively-driven turbulence is required: Rez & 100− 300
depending on the aspect ratio; this value of Rez is reached for Ra three times
above the onset of convection.

2. Convection remains in a regime strongly dominated by the rotation: Ro l
z . 0.15.

3. An energy transfer to the largest scale takes place even for moderate scale
separation between the horizontal extent of the convective cells (lh) and the
horizontal box size (λ) (smallest scale separation considered: λ/lh ≈ 4)
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Preference for cyclonic vorticity (1)

Horizontal cross-section of ωz
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0.0002

0.001
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0.015

R̃a

Ek = 5× 10−6, λ = 1

• Compressible convection (Chan & Mayr 2013; Käpylä et al. 2011): Large-scale
anticyclones for Roz < 0.06 and large-scale cyclone for Roz < 0.25

• Periodic horizontal boundary conditions so horizontal mean of ωz is zero
• Axial vorticity skewness:

S =
〈ω3

z 〉
〈ω2

z 〉3/2

• For R̃a > 21, S > 0: cyclonic vorticity of large amplitude is more likely than
anticyclonic vorticity

• Large-scale anticyclone due to compressibility effects?
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anticyclones for Roz < 0.06 and large-scale cyclone for Roz < 0.25

• Periodic horizontal boundary conditions so horizontal mean of ωz is zero
• Axial vorticity skewness:

S =
〈ω3

z 〉
〈ω2

z 〉3/2

• For R̃a > 21, S > 0: cyclonic vorticity of large amplitude is more likely than
anticyclonic vorticity

• Large-scale anticyclone due to compressibility effects?

12/21



Preference for cyclonic vorticity (1)

Horizontal cross-section of ωz

x

y

 

 

0 2 4
0

2

4

−1

−0.5

0

0.5

1

0 50 100 150 200
−0.5

0

0.5

1

1.5

vo
rt

ic
ity

 s
ke

w
ne

ss

 

 
Ro

z

0.0002

0.001

0.005

0.01

0.015

R̃a

Ek = 5× 10−6, λ = 1

• Compressible convection (Chan & Mayr 2013; Käpylä et al. 2011): Large-scale
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Preference for cyclonic vorticity (2)
• Asymmetry between cyclones and anticyclones is common in turbulent 3D

rotating systems (e.g. Hopfinger et al. 1982)
• Possibilities: (i) System cannot maintain large-scale anticyclone or (ii) both

large-scale cyclones and anticyclones form but anticyclones are unstable

• Stability of a large-scale anticyclone structure: Movie: at t = 0 inversion of the
sign of vorticity

• Locally in the cyclone, ωz ∼ 2Ω ⇒ absolute vorticity → 0 in anticyclone ⇒
large-scale anticyclone unstable to 3D perturbations (e.g. Lesieur et al. 1991)

• Anticyclone region: reduction of the rotation ⇒ convection cells in the core are
not anisotropic enough
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Preference for cyclonic vorticity (3)

Reduced Boussinesq model (Julien et al.
2012): both cyclones and anticyclones of
similar vorticity

∂ωz

∂t
+ (u · ∇)ωz = (2Ω + ωz )

∂uz

∂z
+ (ωH · ∇)uz + ν∇2ωz ,

with ωH = (ωx , ωy , 0).

Small Rossby number limit: ωz � 2Ω ⇒ the system has no preference for cyclonic or
anticyclonic flow.
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Energy transfer to large scales (1)

∂ωz

∂t
+ (u · ∇)ωz = (2Ω + ωz )

∂uz

∂z
+ (ωH · ∇)uz + ν∇2ωz , with ωH = (ωx , ωy , 0)

• No direct thermal forcing for the horizontal flows
• 2D inverse cascade or direct transfer from small scales?

Kinetic energy of the horizontal velocity
(Ek = 5× 10−6, λ = 1):
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Energy transfer to large scales (2)

Filtered simulations
(Ek = 5× 10−6, R̃a = 34) :
Suppress a range of
wavenumbers (kh, kz ) at each
timestep

Case: Full A B C D

kz = 0 all 1 1 1 1

kz 6= 0 all all ≥ 6 ≥ 15 ≥ 21

ratio kh = 1/total 0.81 0.77 0.91 0.73 0.03

(kh = 12: marginally stable mode at onset)

Kinetic energy in kh = 1
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Suggests that the large-scale kz = 0 mode:

• does not require the interaction of
kz = 0 modes (case A): not produced
by 2D inverse cascade

• does not require the presence of
intermediate wavenumbers (cases
B-C)

• is produced by interactions of
small-scale (typical convective size),
z-dependent motions
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Effect on the heat transfer (1)

• Compressible convection (Chan 2007, Kapyla et al. 2011): Large-scale cyclone
associated with negative temperature anomaly

• Boussinesq system: symmetric temperature anomaly with respect to the
mid-plane

Heat Flux: q = − ∂θ
∂z
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Parameters: Ek = 10−4, R̃a = 46 and λ = 4
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Effect on the heat transfer (2)

Time-average:

z-average axial vorticity:
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• Steeper vertical profile of temperature outside the cyclone in the bulk

• Vertical mixing of temperature is less efficient in the cyclone: increase of the
rotation locally inhibits convection
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Effect on the heat transfer (3)
Nusselt number = total heat flux across the layer/flux in absence of motion
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Parameters: Ek = 10−4, R̃a = 37 and λ = 4

Reduced model of Julien et al. (2012): increase of the Nusselt number as the vorticity
dipole forms.
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Effect on the heat transfer (4)

0 50 100 150 200
0.9

0.92

0.94

0.96

0.98

1

1.02

 

 

S2
S3

R̃a

RNu , the ratio of the
Nusselt number in
series S2 and S3 to the
Nusselt number in the
series S1 for the same R̃a

10
−8

10
−6

10
−4

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

 

 

S1
S2
S3
S4
S5

10
−4

10
−3

10
−3

Raf∗

N
u
∗

The solid line corresponds
to Nu∗ = 0.11Ra0.55

f ∗ ,
which is the best fit to
the data of Schmitz &
Tilgner (2009)
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Conclusions

1. Flow dominated by the emergence of a large-scale vortex at the box-size (nearly
depth-invariant, always cyclonic) for Rez & 100− 300 and Ro l

z . 0.15.

2. Filtered simulations: Large-scale vortex produced by interactions of small-scale
(typical convective size), z-dependent, convective motions. These motions need
to be sufficiently anisotropic or the vortex does not form.

3. Large-scale cyclone decreases the efficiency of the vertical heat transfer.
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