Multiscale Approach to the Direct Statistical Simulation of Flows

Brad Marston

with Greg Chini (University of New Hampshire) and Steve Tobias (University of Leeds)

Second-order Cumulant Expansions and Unhappiness

"An alternative procedure which does not suffer this disadvantage consists of deriving a new system of equations whose unknowns are the statistics themselves...."

Edward Lorenz, The Nature and Theory of the General Circulation of the Atmosphere (1967)

"Direct Statistical Simulation" (DSS)

DSS vs. DNS

Low-order statistics are smoother in space than the instantaneous flow.

Statistics evolve slowly in time, or not at all, and hence may be described by a fixed point, or at least a slow manifold.

Correlations are *non-local* and highly anisotropic and inhomogeneous.

Statistical formulations must respect this.

Barotropic Toy Model of Jets

$$\partial_t \zeta + \vec{v} \cdot \vec{\nabla} (\zeta + f) = -\kappa \zeta - \nu_2 \nabla^4 \zeta + \eta$$

$$\zeta = \hat{r} \cdot \vec{\nabla} \times \vec{v}$$

$$f = 2\Omega\sin(\phi)$$

$$\zeta(\theta,\phi) = \sum_{\ell=0}^{L} \sum_{m=-\ell}^{\ell} \zeta_{\ell,m} Y_{\ell}^{m}(\theta,\phi)$$

Zonal Averages

$$\langle q_{\ell_1 m_1} \ q_{\ell_2 m_2} \ q_{\ell_3 m_3} \rangle$$

$$\langle q_{\ell_1 m} \ q_{\ell_2 m}^* \ q_{\ell_3,0} \rangle = \langle q_{\ell_1 m} \ q_{\ell_2 m}^* \rangle \ \langle q_{\ell_3,0} \rangle = c_{\ell_1 \ell_2 m} \ c_{\ell_3}$$

CE2:
$$\langle q_{\ell_1 m_1} \ q_{\ell_2 m_2} \ q_{\ell_3 m_1 + m_2}^* \rangle = 0 \text{ if } m_1 > 0 \text{ and } m_2 > 0$$

$$\dot{c}_{\ell} = A_{\ell} + B_{\ell;\ell_{1}0} c_{\ell_{1}} + C_{\ell;\ell_{1}m;\ell_{2}m}^{(-)} c_{\ell_{1}\ell_{2}m}
\dot{c}_{\ell_{1}\ell_{2}m} = 2\Gamma_{\ell_{1}m}\delta_{\ell_{1}\ell_{2}} + B_{\ell_{1};\ell_{m}} c_{\ell\ell_{2}m} + B_{\ell_{2};\ell_{m}} c_{\ell_{1}\ell_{m}}
+ C_{\ell_{1};\ell_{0};\ell'm}^{(+)} c_{\ell} c_{\ell'\ell_{2}m} + C_{\ell_{2};\ell_{0};\ell'm}^{(+)} c_{\ell} c_{\ell_{1}\ell'm}$$

CE2 pprox SSST (Brian Farrell & Petros Ioannou)

Srinivasan & Young; Parker & Krommes; Tobias & JBM; Bouchet, Nardini & Tangarife; Ait-Chaalal, Schneider & Sabou; ...

CE3 & CE2.5

$$\dot{c}_2 = L[c_2] + Q[c_1c_2 + c_3] + \Gamma$$

$$\dot{c}_3 = L[c_3] + Q[c_1c_3 + c_2c_2 + c_4]$$

Remove eigenvectors of c2 with negative eigenvalues

$$\dot{c}_3 = L[c_3] + Q[c_1c_3 + c_2c_2] - c_3/\tau$$

CE2.5:
$$c_3 = \tau Q[c_2 c_2]$$

Demonstration at end of talk (if time)

A Conservative Approximation

CE2 conserves total angular momentum, energy, and enstrophy in absence of forcing and damping.

CE3 additionally conserves the 3rd Casimir prior to projection (see poster by Wanming Qi).

Realizability

CE2 = Quasilinear = Gaussian PDF = Realizable

CE2.5 = generalized EDQNM = realizable?

CE3: Not realizable [Kraichnan (1980)]. Fixed this by projecting out offending eigenvectors.

Backwards Jet

Mac App Store Preview

GCM

By Brad Marston

Open the Mac App Store to buy and download apps.

Description

Idealized General Circulation Models (GCMs) of planetary atmospheres, solved by a variety of methods.

GCM Support

What's New in Version 1.0.4

New wave lifecycle model, better organized menu. Bug fixes to CE3 (now conserves 3rd Casimir) and the calculation of the eddy diffusivity.

Free

Category: Education Updated: May 23, 2013

Version: 1.0.4 Size: 1.4 MB Language: English Seller: Brad Marston © 2013 M3 Research

Rated 4+

Requirements: OS X 10.8.3 or later, 64-bit processor

Customer Ratings

We have not received enough ratings to display an average for the current version of this application.

All Versions:

8 Ratings

Screenshots

Image: NASA

Image: NASA

Separate Triads Into Long and Short Scales

Generalized 2nd Order Cumulant Expansion (GCE2)

$$\frac{\partial}{\partial t}q = L[q] + Q[q, q]$$

$$q = \ell + h$$

$$\frac{\partial}{\partial t}\ell = Q[\ell, \ \ell] + Q[(h, \ h)] \qquad \frac{\partial}{\partial t}h = Q[\ell, \ h]$$

$$\frac{\partial}{\partial t}(h\ h) = 2Q[\ell,\ (h]\ h)$$
 Closure

Malecha, Chini, and Julien, J. Comp. Phys. (2013); Bakas and Ioannou, PRL **110**, 224501 (2013)

Vorticity Power Spectra

Two-Point Vorticity Correlations

Two-layer primitive equations: Relaxation to a prescribed equator-to-pole temperature difference

Two-Point Vorticity Correlations

$$\Lambda = 12$$
 "Truth"

Observation

(Courtesy F. Sabou)

A Systematic Approximation

Exact in $\Lambda \to \infty$ limit and often accurate for $\Lambda = 3$

A Conservative Approximation

GCE2 conserves total angular momentum, energy, and enstrophy in absence of forcing and damping.

Realizable

GCE2 = Closed under selected triads = Realizable

Parallelism

Well suited for parallel computation: GPUs / OpenCL