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1: Very brief look at standard jet mechanisms and the case of                          

earthly strong jets, following Rosenbluth and Haurwitz lectures               

2. Hot off the press: results from a new idealized model of Jupiter‟s jets 

– strange new territory!!

3. Even hotter (not to say hasty and preliminary)  surprises from the               

extended Hasegawa-Mima equation including a `damn fool experiment‟ ...

A  tale of three species,  or:

Is homogeneous turbulence theory a dangerous idea?
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fluid dynamics on a grand scale…

And rotation and stable stratification are

important in many cases, including the Sun‟s

interior…

Our life support system
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1979: Voyager 1 approaching (60 Jupiter days) – unearthly!
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Today it  hardly needs saying, following an

aphorism of  V.I. Arnol‟d,  that

Rotating, stratified

fluid dynamics

cannot be

understood without

potential vorticity,

PV
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Today it  hardly needs saying, following an

aphorism of  V.I. Arnol‟d,  that

Rotating, stratified

fluid dynamics

cannot be

understood without

potential vorticity,

PV

Here‟s the most

beautiful definition

of  the  exact PV:

Tokamaks too?
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In both single-layer and multi-layer systems,

we can define the exact PV as the suitably normalized Kelvin circulation

of an infinitesimal material circuit Γ lying in a stratification surface.
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What do real PV fields look like?  Here‟s an example (nostalgic for me):

In both single-layer and multi-layer systems,

we can define the exact PV as the suitably normalized Kelvin circulation

of an infinitesimal material circuit Γ lying in a stratification surface.
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McIntyre and Palmer (1983), revisited

PVU

Courtesy Dr A J Simmons,

European Centre for Medium

Range Weather Forecasts:

Initial state

PV on the 850K stratification surface:
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Final state

turbulent

here

wavelike

here

PV on the 850K stratification surface:



Courtesy Dr A J Simmons,

European Centre for Medium

Range Weather Forecasts:

Inhomogeneous!

PV at 850K,
mid-Jan. 1979

Quasi-elastic

“eddy-transport

barrier”
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Yes, it‟s turbulent – strongly nonlinear – but also highly inhomogeneous,

well outside the scope of homogeneous turbulence theory and its

extensions.
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well outside the scope of homogeneous turbulence theory and its

extensions.  In particular,

- the structure is completely missed by power spectra

(e.g. Armi and Flament 1985, J. Geophys. Res.)

- the structure has wavelike and turbulent regions that fit together

in a “wave-turbulence jigsaw”:

PV contours undulate reversibly:

PV contours deform irreversibly:

NB: it‟s impossible to make sense of the dynamics, even gross

angular-momentum budgets – including Starr‟s “negative viscosity”

(anti-friction) – without recognizing this inhomogeneous jigsaw structure.

The simplest  fully self-consistent model of the structure is the

Stewartson-Warn-Warn (1978) nonlinear critical-layer theory.

And the essence of it was first recognized by Dickinson (1969).
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elastic
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The wave-turbulence jigsaw structure is often associated with

jet-self-sharpening scenarios.   (Negative viscosity or

anti-friction again.)
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(Fig 5 from

my 1982

review,

J. Met. Soc.

Japan 60)
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(strongly nonlinear)
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– nonlinearly relates eddy fluxes of PV to

momentum-flux divergences:

Barotropic (any LD): (+ form stress if topog) 
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3. PV Phillips effect: a generic positive-feedback effect:
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O. M. Phillips (1972 Deep Sea Res).  NB: Don‟t need to assume Fickian diffusion.

The more inhomogeneous, the stronger

the feedback, bringing in the shear effects

(Juckes & M, Nature 1987).
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a positive feedback

tending to make the mixing

spatially inhomogeneous.
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Phase speed   c   lies within the

range of the jet velocity profile.
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Many other examples (e.g. nice

observational work in Huw Davies‟

group.   So here‟s the bottom line:
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much better than it ought (in part because of the PV-inversion scale effect –

and the arguments against homogeneous PV mixing are so powerful –

that we can reasonably talk about a paradigm shift

provided that we emphasize the word “inhomogeneous”.

And this inhomogeneous PV-mixing paradigm is one of the few

simple handles we have on the strongly nonlinear fluid behaviour.

It may also give a handle on strong nonlinearity in tokamaks – Rosenbluth Lecture

(Past obstacles? “Homogeneous” unconsciously assumed?

Mathematical temptation?   Constant diffusivity too seductive?)

The paradigm is not, of course, the Answer to Everything:

● PV doesn‟t always mix (e.g., vortex merging)

● Not all jets are strong jets (e.g., “ghost jets” in the Pacific Ocean)

● And there are, of course, other nonlinear mechanisms

that show up in different thought-experiments:

(??)(??)
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(Consider Jupiter‟s folded filamentary regions, and
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and stronger wherever base colder, & v.v.

Note domain-wide “complementary forcing”

quasi-hyperdiffusive.

Ignore from here on.

,    where:

Key point: PV-bias plus base-temperature dependence can

replace large-scale friction! Statistical steadiness possible!!

Can have

either sign

doubly periodic, X
NB, not

spectrally

narrow 

No need for radiative damping either.

(Realistic radiative damping timescales?  Or is concept irrelevant?)

PV inversion: given q1, solve for ψ1.

cf. exact impermeability theorem
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Strong injections

Semi-strong injec‟ns

Weak injections

Forcing strengths             ,

(as required for passive

Kelvin shearing)

Recall

cf. Shigeo Kida (1981):

=  16:

in units of background shear

=  8:

=  2:
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With this setup, bias 1/16 is enough to ensure large-cyclone attrition.

Illustrate for strength        = 16 and     = 4 times nominal Jovian value:

At present we use the following injection-pair algorithm, with “saturation”:



Early mature, bias 1/16:

Early mature, bias 1/64:

Bias 1/64 is too weak to stop the large cyclone from growing further:



Skipping forward, ~ 80 Earth-years later:

bias 1/16

bias 1/64

Bias 1/64 is too weak to stop the large cyclone from growing further.



bias = 0

1/64

1/16

Total energyNo.

of

injec-

tions

m/s

Early mature stage,  4 Earth years, strength still 16:

deep jet
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Early mature stage,  4 Earth years, bias 1/16,strength 16:

Total energyNo.
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injec-
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Recall “extended Hasegawa-Mima”, „model 2‟ in Rosenbluth Lecture.

Prime is crucial!  (Tilde, if you prefer

– departure from zonal average.)

Implication: strong jet with given

PV contrast has far greater velocity

contrast:

(For historical justice, we should call it the

“extended Charney-Obukhov-Hasegawa-Mima model”,

ECOHAM – oh, dear):

with

Toy tokamak? Very preliminary – with hopes of collaboration with Steve Tobias

and others (?)   E.g. I don‟t yet know enough about plasma numerical magnitudes...)

Rosenbluth

Lecture, Fig. 1.8
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Add self-excitation term as crude model – this is cheating! – of resistive

drift-wave instability à la Hasegawa-Wakatani (note, Jeffrey Parker has

done this properly, personal communication Tuesday):

constant nominal growth rate constant Rayleigh frictions (more cheating)

with      >>   

Get predator-prey-like situation, with hyper-staircasing of the

profile.  (My Rosenbluth speculation was WRONG!!)  Not weakly

forced/dissipating, PV-mixing-dominated, à la Scott-Dritschel JFM 2012.

(in short-

hand)

is chosen much smaller than the domain size (square box now) –

less Jupiter-like and more tokamak-like – such that
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Conclusions re new work (Jupiter and extended Hasegawa-Mima:

▪ Jupiter model has no large-scale friction and no radiative damping.

▪ Despite that, PV bias and zeta-dependence allow statistically-steady

states – but closely tied to the deep jets.  Deep jets now essential!!

▪ Other significant mechanisms in our model include monopole migration,

PV mixing (esp. when background beta strong), and cyclone attrition,

as well as vortex merging/cannibalism.  (Relevance to GRS etc. ???)

▪ Passive Kelvin (SSST, CE2) almost  vanishingly weak  despite

favourable forcing-anisotropy (Srinivasan & Young). 

▪ EHM results robustly suggest the opposite: Kelvin mech. probably dominant,

thanks to perfectly unbiased self-excitation, but easily killed by shear.

Reason is the enormously stronger and more extensive shear arising from

= 0 zonal-mean PV inversion.  (“Killed”: easy extension of Kelvin 1887.)

For more detail, websearch ”lucidity principles” 
then back to my home page at ”Encyclopedia”, ”Rosenbluth”, ”Haurwitz”.




