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Mean flows — coherent structures — condensate

System-size vortex created by inverse cascade as a result of
small-scale excitation in experiments by M. Shats at al.

Shats, Xia, Punzmann, Falkovich (2007)
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Gravity waves on water surface (A. Korotkevich)
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I Formulation in terms of surface elevation ⌘(r, t) and velocity
potential on the surface, � = �(r, ⌘, t), where v = r�.

I Hamiltonian is expanded in powers of steepness, µ =
p|r⌘|2.

I Complex canonical (normal) variables ak are introduced
instead of real �(r, t) and ⌘(r, t).

I ak is an elementary excitation (plane wave). Inverse cascase
of |ak |2 is studied.

A. Korotkevich <alexkor@math.unm.edu>, private communications (2014)
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Energy spectra of gravity waves (A. Korotkevich)
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Mid-range forcing and small-scale damping result in establishing of
direct and inverse cascades and accumulation of wave action at
small k.

A. Korotkevich <alexkor@math.unm.edu>, private communications (2014)
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Nonlinear Schrödinger (Gross-Pitaevski) equation

i t +r2 ± | |2 = 0

describes the evolution of a temporal envelope of a spectrally
narrow wave packet, independent of the origin of the waves and

the nature of the nonlinearity

Benney & Newell (1967) — general settings
Zakharov (1968) — deep water waves
Hasegawa & Tappert (1973) — optical fibers
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Why universal?
Linear wave:

@a
@t

+ v
@a
@x

= 0

@ak
@t

+ i!ak = 0

@ak
@t

= �i
@H2

@a⇤k

H2 =

Z
!k |ak |2dk

Nonlinearity:

�� ��

�� ��

k1 + k2 = k3 + k4

k = k0 + qk , qk ⌧ k0

H4 = ...

H = H2+H4 = H2+

Z
T1234 a1a2a

⇤
3a

⇤
4 �(k1+k2�k3�k4)dk1dk2dk3dk4

Rewrite

@ak
@t + i!ak = �i @H4

@a⇤
k

for the envelope, ak(t) = e�i!0t (q, t),

@ q

@t
� i!0 q + i!(q) q = �iT

Z
 ⇤

1 2 3 �(q+q1�q2�q3)dq1dq2dq3
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Why universal?

i
@ q

@t
+ !0 q � !(q) q = T

Z
 ⇤

1 2 3 �(q+ q1 � q2 � q3)dq1dq2dq3

Assume ! = !(k) and expand for small q

!(q) = !0+qi

✓
@!
@ki

◆

0

+

1

2

qiqj

✓
@2!
@ki@kj

◆

0

= !0+vqk+
1

2

✓
!00q2

k +

v

k0
q2
?

◆

Back to r -space (k0 k ˆz):

i

✓
@ 

@t
+ v

@ 

@z

◆

| {z }
@ 
@t in moving frame

+
!00

2

@2 

@z2| {z }
dispersion

+
v

2k0
r2

? 
| {z }
di↵raction

= T | |2 | {z }

nonlinearity

Rescale  and spatial coordinates:

i t +r2 ± | |2 = 0
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Connection to nonlinear optics
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1

c2
(✏E )tt �r2E = 0

Stationary envelope: E = 1
2 (x , y , z)e

ikz�i!t , with ! = kcp
✏0
.

Kerr nonlinearity: ✏ = ✏0 + ✏2|E |2 = ✏0 + ✏2| |2.
1
c2 (i!)

2(✏0 + ✏2| |2) � ⇥r2 + 2ik z � k2 
⇤
= 0

Neglecting @2 
@z2 and using kx ! x , 1

2kz ! z , and  | ✏2k✏0
| 12 !  ,

i z +r2
? � T | |2 = 0, with T = ±1
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Connection to hydrodynamics

i t +r2 � T | |2 = 0

Change of variables:  = Ae i�, ⇢ = A2, v = 2r�.

vt +r |v|2
2

= �1

⇢
rp

⇢t +r(⇢v) = 0

“Equation of state”:

1

⇢
rp = r


2T⇢� 1p

⇢
r2p⇢

�
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Collapses in focusing NSE
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i t +r2 + | |2 = 0

Integrals of motion

N =
R | |2 dDr

H =
R �|r |2 � 1

2 | |4
�
dDr

Within the packet

| |2 ⇠ N/LD

H ⇠ NL�2 � N2L�D
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Zakharov & Kuznetsov (1986)
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Cascades of turbulence
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� ��H =

R
!k |ak |2dk

N =

R |ak |2dk
N1 + N3 = N2

!1N1 + !3N3 = !2N2

N1 = N2
!3�!2
!3�!1

⇡ N2 !1N1 ⌧ !2N2

N3 = N2
!2�!1
!3�!1

⌧ N2 !3N3 ⇡ !2N2
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Dyachenko, Newell, Pushkarev, & Zakharov (1992)
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Modulational instability

i t = � 1
2!

00r2 + T | |2 

Exact solution (condensate):

 =
p
N0e

�iTN0t

For small perturbation  :=  +  ,

i t = � 1
2!

00r2 + 2TN0 + T 2 ⇤ + O(| |2).

In k-space, using ( ⇤)k =  ⇤
�k ,

i d
dt k =

�
1
2!

00k2 + 2TN0

�
 k + T 2 ⇤

�k ,

�i d
dt 

⇤
�k =

�
1
2!

00k2 + 2TN0

�
 ⇤
�k + T 2 k .
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Modulational instability

Looking for the solution in the form

 k = ↵e�i(TN0+⌦k )t and  ⇤
�k = �e i(TN0�⌦k )t ,

rewrite the system as

✓
1
2!

00k2 + TN0 � ⌦k T 2

T ⇤2 1
2!

00k2 + TN0 + ⌦k

◆✓
↵ e�iTN0t

� e iTN0t

◆
= 0

Bogoliubov dispersion relation:

⌦2
k = !00TN0k

2 + 1
4!

00 2k4

Instability: !00T < 0 (focusing nonlinearity).

Bogoliubov (1947)
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Why turbulence?

I Wide energy spectra; cascades

I Statistical description

I High probability of extreme events (intermittency)

I Coherent structures — condensate or collapses

I Steady (with damping/forcing) or decaying

The rest of this talk is devoted to wave-condensate interactions in
steady 2D turbulence described by defocusing NSE.



Wave turbulence

N. Vladimirova

Examples

NSE turbulence

Defocusing NSE

Onset of condensate
Spectral symmetries
E↵ect of forcing
Small perturbations
Angle of interaction
Predator-prey?
Phase coherence
Three-wave model
Model predictions
Modes in turbulence
Collective oscillations
Next

Conclusions

Defocusing nonlinear Schrödinger equation

i t +r2 � | |2 = i f̂  

Condensate

 =
p

N0 exp(�iN0t)

Notation:

N = | |2
N0 = | |2
n = N � N0 =

R | k |2d2k

We consider large condensate

N0 � n

Statistically quasi-steady

t ⇠ 104 � 1
! ⇠ 10�3
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Onset of condensate
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Onset of condensate
t = 100 : N0 = 58, n = 160

t = 1500 : N0 = 751, n = 20
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Phase transitions: breakdown of symmeries
N = 219 N = 771 N = 1166 N = 4202
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Phase transitions: breakdown of symmeries
N = 219 N = 771 N = 1166 N = 4202

I Higher condensate ) more ordered system

I Long-range orientational, short-range positional order

I What happens at even larger N?

Vladimirova, Derevyanko, & Falkovich (2012)
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E↵ect of forcing

Instability-driven force

i t +r2 � | |2 = i f̂  

Random force

i t +r2 � | |2 = i F̂
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Small perturbations

Compare quadratic and cubic terms in Hamiltonian

hH2i = ⌦kn = N
1/2
0 kn

hH3i =

X

k1,k2,k3

V123h k1 k2 
⇤
k3i�(k1 + k2 � k3)

'
X

k1,k2,k3

|V123|2n1n2 �(k1 + k2 � k3)�(⌦1 + ⌦2 � ⌦3)

' |V |2n2c

k3

k

c
' n2k

N
1/2
0

E↵ective nonlinearity parameter is small,

H3

H2
' n

N0
.

But: weak turbulence assumes random phases.

Angle of interaction: k/c ⇠ k/
p
N0, where c =

p
2N0.
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Angle of interaction

N0 = 400 N0 = 3600

Arch grows in k-space from the condensate to a preset mode, k0.
Arch equation:

!(k0) = !(k) + !(|k0 � k|)
!2(k) = 2N0k

2 + k4

Angle of interaction:
�max ⇡ kp

3N0/2
⇠ k

c
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Condensate-turbulence oscillations

I The system periodicly oscillates around a steady state.

I Turbulence and condensate exchange a small fraction of
waves.

I Predator-prey model?
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Phase coherence

nk

�k

✓k = 2�0 � �k � ��k

✓k with k2nk > 0.01

2�0 � �k � ��k = ⇡
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Three-wave model

Consider condensate interacting with two waves

 ±k =
p
n exp(±ikx + iN0t + i�±k)

with ✓ = 2�0 � �k � ��k .

Hamiltonian:

H = 2k2n + 1
2N

2 + 2n(N � 2n)(1 + cos✓) + n2

Equations of motion:

ṅ = 2n(N � 2n) sin ✓

✓̇ = 2k2 + 2(N � 3n) + 2(N � 4n) cos ✓

Stability points:

✓ = ⇡, n = � 1
2k

2 ) unphysical
✓ = 0, n = (4N + k2)/14 ) too high n

Falkovich (2011), Miller, Vladimirova & Falkovich (2013)
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Predictions of three-wave model

ṅ = 2n(N � 2n) sin ✓

✓̇ = 2k2 + 2(N � 3n) + 2(N � 4n) cos ✓

For n ⌧ N:

I the system spends most of its time around ✓ = ⇡ state

I the frequency of oscillations 2⌦ ⇡ 2
p
2Nk2 + k4

I the amplitude a ⌘ p
n(t) exhibits complicated cusped shape

-1

 1
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 5

 7

 9

 0  0.02  0.04  0.06  0.08  0.1

θ 
/ π

t Ω / 2π

N = 3600
k = 1

 0

 0.2

 0.4

 0.6

 0.8

 0  0.02  0.04  0.06  0.08  0.1

a 
/ A

t Ω / 2π
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Individual modes in turbulence

In turbulence, n ⌧ N condition is well satisfied.

As predicted:

I the system spends most of its time around ✓ = ⇡ state

I the frequency of oscillations approaches 2⌦ = 2
p
2Nk2 + k4

I the amplitude a ⌘ p
n(t) exhibits complicated cusped shape

However:
The 3-wave model cannot grasp closed trajectories with ✓ ⇡ ⇡.
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/ π
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N = 400
k = (1,1)
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Collective oscillations
I The system periodically oscillates around a steady state.

I Turbulence and condensate exchange a small fraction of
waves.

I The condensate imposes the phase coherence between the
pairs of counter-propagating waves (anomalous correlation).

I Collective oscillations are not of a predator-prey type; they are
due to phase coherence and anomalous correlations.

 10

 15

 20

 25

 0  0.1  0.2  0.3  0.4  0.5

n

t - t'

N = 1518
N =   486

 0

 0.1

 0.2

 0  100  200  300

|ff
t(n

)|2

ω

 0

 100

 200

 300

 0  20  40  60  80
ω

N1/2

ω1,  L=2π
ω2,  L=2π
ω1,  L=4π
ω2,  L=4π



Wave turbulence

N. Vladimirova

Examples

NSE turbulence

Defocusing NSE

Onset of condensate
Spectral symmetries
E↵ect of forcing
Small perturbations
Angle of interaction
Predator-prey?
Phase coherence
Three-wave model
Model predictions
Modes in turbulence
Collective oscillations
Next

Conclusions

Next: inverse cascade
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k

t = 0.5,   N = 100
t = 1.0,   N = 200
t = 2.0,   N = 400
t = 3.0,   N = 600

k-2

What is the dynamics of spectra before onset of condensate?
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Next: flux in k-space

Can we directly and dynamically measure flux in k-space?
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Conclusions
I

We consider turbulence in the Gross-Pitaevsky model and study

the creation of a coherent condensate via an inverse cascade.

I
The growth of the condensate leads to a spontaneous breakdown

of symmetries of small-scale over-condensate fluctuations: from

the 2-fold to 3-fold to 4-fold (phase transitions).

I
At the highest condensate level reached, we observe a short-range

positional and long-range orientational order (“hexatic phase”).

I
The phase transitions happen when the driving term corresponds to

an instability and does not occur when pumped by a random force.

I
The condensate imposes the phase coherence between the pairs of

counter-propagating waves (anomalous correlation).

I
Collective oscillations are not of a predator-prey type; they are due

to phase coherence and anomalous correlations.
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