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Recent Observational Results-Structures in Disks

Casassus et al (2013)

Continuum emission at 4.65 GHz

Focus on CO emission (2 micron emission)

Are source of structures planets?

 
Fig. S1. The 0.44 millimeter (685 GHz) continuum emission of IRS 48 as observed with ALMA 
Band 9 observations, in exponential color scale to show the dynamic range of the image and the 
high contrast between north and south. Positive values from 0 to 390σ (σ  =  0.82  mJy/beam) are 
shown with blue through red, while negative values from 0 to -4σ are shown with blue, violet, 
and black. The image is centered on the star (white star symbol). The ALMA beam is indicated 
with a filled white ellipse in the lower left corner. White and black contours indicate the 2, 3, 10 
and  100σ  rms   levels.  

 

Van Der Marel et al. (2013)

440 µm emission (ALMA)

⇔ mm-sized grains!
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Paradigmage - A (controversial) view of protoplanetary disks
AA49CH06-Armitage ARI 5 August 2011 12:22

Dead zone

Collisional ionization
at T > 103 K (r < 1 AU),

MRI turbulent

Resistive quenching
of MRI, suppressed

angular momentum
transport

MRI-active 
surface layer

Nonthermal
ionization

of full disk column

Cosmic
rays?

Ambipolar diffusion
dominates

X-rays

Figure 7
Schematic structure of the protoplanetary disk if the low ionization fraction at radii r ∼ 1 AU quenches angular momentum transport
due to the magnetorotational instability (MRI), forming a dead zone (Gammie 1996). X-rays, produced from the cooling of plasma
confined within magnetic field loops in the stellar corona, ionize the disk surface, but fail to penetrate to the midplane. The image in
the lower left shows density isosurfaces computed from a simulation of a fully turbulent disk (K. Beckwith, P.J. Armitage & J.B. Simon,
unpublished simulations).

which is at about 1 AU for Ṁ = 10−7 M# year−1 (Figure 2) moves inward as the disk
accretion rate declines.

2. An outer zone, where nonthermal sources of ionization suffice to raise the ionization fraction
at the midplane above the threshold for MRI activity. The inner boundary of this region
also moves inward as the surface density drops, because the shielding the disk provides to
ionizing radiation and particles becomes less effective.

3. An intermediate region, where the midplane is cool enough, and well-enough shielded from
ionizing radiation, to fail to satisfy the conditions for the MRI to operate. Gammie (1996)
suggested that the disk at these radii would develop a layered structure, with a dead zone
near the midplane in which turbulence was absent or strongly suppressed. Accretion would
then occur entirely (or primarily) through an active surface layer, whose thickness is defined
by the flux and penetration strength of cosmic rays (in the original version) or stellar X-rays.

No observation provides direct evidence either for or against the existence of dead zones.
Theoretical calculations, however, continue to suggest that it is more likely than not that
protoplanetary disks develop a dead zone at radii r ∼ 1 AU (Salmeron & Wardle 2008; Terquem
2008; Bai & Goodman 2009; Turner & Drake 2009; Turner, Carballido & Sano 2010). The sole
situation in which a region of suppressed MRI transport is not predicted to exist is the case where
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Theorists View of a Disk

Reanimating Dead Zones: Turbulence in Terrestrial Planet Forming Regions of Protoplanetary Disks

• Objectives: Protoplanetary disks (pp-disks), circumstellar gas surrounding young stellar objects, are understood
to undergo accretion processes moving upwards of 10�8M⇥ per year. They are also considered to be the factories in
which planets are assembled in a short time frame (few 107 yr) based on observational constraints. The assembly process,
whatever it may be, depends sensitively on the dynamical nature of the gas in which it resides. Deciding on what process
is present during planetesimal assembly is, therefore, paramount. At this current stage of our understanding, it is held
that those regions in pp-disks where the majority of planetesimal growth occurs (interior of disks outwards of 5-10AU) are
dynamically quiet (aka Dead Zones). Recent theoretical and computational results indicate that the Goldreich-Schubert-
Fricke instability (GSFI), a process occurring for rotating flows supporting an axial gradient of its rotational flow profile,
vigorously operates under conditions characterizing these pp-disk Dead Zones.

In this proposal we pro�er the following hypothesis: the Goldreich-Schubert-Fricke instability is the missing-link process
that drives turbulence in protoplanetary disk Dead Zones and, moreover, it plays a mitigating role in the processes operating
in planet formation.

In the section entitled “Background and Setting” we itemize our recent results pertaining to the GSFI and summarize the
current state of scientific understanding of disk dynamics as pertaining to the question of activity and transport. In “Task
I” we propose to expand the fundamental features of the GSFI as applied to pp-disks through a combination of complete
linear theory calculations and nonlinear simulations. We propose to ascertain the amount of turbulent transport the GSFI
delivers for a variety of pp-disk conditions and its relationship to the Subcritical Baroclinic Instability. Additionally, our
e�orts will focus on developing simpler asymptotic models depicting the instability in order to be used for furthering
physical understanding of the mechanisms at play. We will examine also if whether or not the GSFI may be applicable
to the atmospheres of hot exoplanets. In “Task II” we propose to examine the influence the GSFI has on the fate of dust
distribution in pp-disks. This will be broken down into: (a) understanding the passive response of dust to the velocity
fields characterizing the GSFI in saturation and (b) developing an understanding regarding the influence that the GSFI
has upon dust accumulation processes in disks where the dust back-reacts onto the gaseous component like, for example,
the Streaming Instability. Each of these examinations will be done using the full complement of linear theory calculations
and numerical simulations. Using the results of Task II, in “Task III” we propose to explore the relationship and influence
the GSFI has on other processes including the magnetorotational, Kelvin-Helmholtz and Rossby-wave instabilities.

• Background and Setting
It is now generally accepted that planets are everywhere one looks in the Galaxy. The question of how and under what

conditions they form is one of the most fundamental questions in astronomy. The reason is simple: an understanding of
how planets form provides us with the proper setting to start examining the origins of life. The line of enquiry outlined
in this proposal is aimed at contributing new understanding and providing essential clues to this question. The analysis
proposed here pertains toward identifying the dynamical conditions present during the planet assembly process.

Figure 1: A theoreist’s schematic of a pp-disk.

With our focus (as a scientific community) on solar mass star
systems, it is generally supposed that planets, or at the very least,
planetesimals, are formed inside circumstellar disks that orbit re-
cently “born” stellar object. This planet manufacture process is
thought to take place within the initial 10-100 Myr after star forma-
tion as indicated by both meteoritic evidence (100 Myr figure) and
the well-established correlations of near-IR excess and spectroscopic
signatures of accretion (<10 Myr) (Hartigan, Edwards & Ghandour
1995, Strom et al. 1989). Substantiating this last point, are the di-
rect observation of planets in debris disks (Kalas et al. 2008) which
are the post 10-Myr remnants of proto-planetary disks (henceforth
“pp-disks”). PP-disks around solar-type stars have been imaged and
observed and model analyzed (see review of Williams & Cieza 2011)
indicating typical temperatures < 100 K at a few AU and diminishing like a power law with radius. PP-disks are su⇥ciently
cold and the collision/recombination processes are e⇥cient enough to imply that the bulk of their interiors, at distances
greater than a few AU, are weakly ionized at best (Bai & Goodman 2009, Chiang & Murray-Clay 2007, see also below).
For this reason the deep interiors of pp-disks are generally regarded as magnetically inactive and these regions are referred
to as Dead Zones (Gammie 1996), which make up a substantial portion of the mass of pp-disks (e.g. Ilgner & Nelson
2006a,b,c), and are so-called because there are currently no identified viable sustained hydrodynamic instability process
known to be active/operative under conditions characterizing these regions. Moreover, pp-disks have copious amounts
of complex dust particles that share in the radiative processes and balances dictating disk properties and morphology
(Kenyon & Hartmann 1987, Chiang & Goldreich 1997, Williams & Cieza 2011).

1
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The small parameter: ε

• Discussion of “thin-disks" surrounds the disparity of two velocities:

ε ≡ H0

R0
=

Vertical Scale Height
Radial Length Scale

=
Local Sound Speed

Local Keplerian Speed

Another way to think of it:

“the time it takes a sound wave to propagate upwards is the same as one local orbit time"
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Barotropic Steady Rotational States

For disks with barotropic equations of state P = P(ρ) only

• Axisymmetric steady configuration =⇒

−Ω2R = −1
ρ

∂P
∂R
− ∂Φ

∂R
, 0 = −1

ρ

∂P
∂Z
− ∂Φ

∂Z
(disk− radial momentum balance) (disk− vertical momentum balance)

Disk rotates constantly on cylinders: Ω(R,Z) = Ω(R) only.
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Baroclinic Steady Rotational States

For example, for P = P(ρ,T) = ρ(R,Z)c2(R)

• steady configuration =⇒

−Ω2R = −1
ρ

∂P
∂R
− ∂Φ

∂R
,

0 = −1
ρ

∂P
∂Z
− ∂Φ

∂Z

R
∂Ω2

∂Z
=
∂ ln c2

∂R
∂Φ

∂Z

Disk rotation varies with Z: Ω2(R,Z) ∼ Φ(R,Z).
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GSF Primer - Quickie
Nonlinear Numerical Experiments
Asymptotics and Linear Theory

GSF Instability - unstable inertial waves - (nearly incompressible disturbances)

1 Goldreich-Schubert-Fricke (1967/68) [Also Urpin 2003, Arlt & Urpin (2004)]

– mean rotation not constant on cylinders −→ j2 = R2Ω(R, Z)

instability for:
∂j
∂R
− `Z

`R

∂j
∂Z

< 0 (Solberg-Hoiland)

2 For a “locally isothermal" disk:

T = T0

(
R
R0

)q

=⇒ V(R, Z) = VKep (R)

(
1 + q

[
H2

0

R2
0

]
Z2 · · ·

)

3 cold disks: scale height `Z = H0 � R0 implies (for reference Ω0 at R0)

(growth rates) ∼ 3
2

Ω0
H0

R0
⇐⇒ (on radial disturb. length scales)

`R ∼
H0

R0
H0.

For H0/R0 = 0.05 =⇒ `R ∼ 0.01R0
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GSF Primer - Quickie
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GSF Mechanism - a relative energy (via parcel interchange) argument

INSTABILITY

→ when total energy of interchanged configuration is less than original state
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Method/Parameters/Results

Model Equations

∂tρ+∇ · ρu = 0,

∂tρu +∇ · ρuu = −∇P− ρ∇Φ,

∂tT + u · ∇T = −(T − Tref)/τrelax

with P = ρT and Φ = −GM/R
or a proper energy equation

∂te +∇ · eu = −P∇ · u +Q

Code and Setup

Nirvana and Nirvana-III code
(spherical coordinates) (Nr = 1300 and Nθ = 1000)

Axisymmetric disturbances -
rin/R0 = 1 rout/R0 = 2, Zmax/H0 = 5.

Outflow or reflecting conditions -
(no observed difference in results)

T ∼ (R/R0 )
q

q = -1 (constant H0/R0 = 0.05 over domain)

seed with random field in KE

Result
Strong Activity when τrelax → 0 and q 6= 0.
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vertical velocity frames

Vertical shear instability in discs 7

Figure 2. Edge-on contours of the perturbed vertical velocity as a function of R, Z and time for model T1R–0.

Figure 3. Edge-on contours of the perturbed vertical velocity as a function of R, Z and time for model TR1–0. Note that for clarity, the grey-scale of the image
has been streteched by plotting the quantity sign(vZ ) × |vZ |1/4. Note that the spectrum bar shows values of v1/4

Z .

and the grey-scale, Fig. 3 plots the values sign(vZ) × |vz|1/4 so that
the grey-scale is stretched to enable the morphology of the pertur-
bations to be more clearly discerned. Both figures demonstrate that
perturbations start to grow near the upper and lower disc surfaces,
where |dΩ/dz| is largest, and toward the inner edge of the disc.
The perturbations are characterised by having short radial and long
vertical wavelengths, as expected for the vertical shear instability
described in Sects. 3.2 and 6. The short radial wavelength gives

rise to significant radial shear in the vertical velocity dvZ/dR, and
this apparently causes small scale eddies to form at the shearing
interfaces. As time proceeds the instability extends toward the disc
midplane and out to larger radii, until the entire disc participates in
the instability (although it should be noted that the midplane where
dΩ/dz = 0 is formally stable to local growth of the vertical shear
instability).

Close inspection of the lower panels in Fig. 3 show that the

c� 2002 RAS, MNRAS 000, 1–19

Radial Wavelength of dominant growing mode ∼ 0.009R0.
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features and clues

component KE
6 Nelson, Gressel & Umurhan

Perturbed kinetic energy versus time 
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Figure 1. Time evolution of the normalised perturbed kinetic energy in the
meridional and radial coordinate directions for model T1R-0 with p = −1.5,
q = −1 and reflecting boundary conditions at the meridional boundaries.

Nθ of 1328×1000 grid cells for our nirvana runs with H0/R0 = 0.05
orMmid = 20 at r = R0. The nirvana-iii runs used a resolution of
1344 × 1024

We adopt a system of units in which M = 1, G = 1 and R0 = 1.
When presenting our results, the unit of time is the orbital period at
the disc inner edge, Pin = 2π.

5 RESULTS

The main aims of the following simulations are to delineate condi-
tions under which the disc models outlined in Sect. 2.1 are unsta-
ble to the growth of the vertical shear instability, and to examine
the effect that different physical and numerical set-ups have on the
growth and evolution of this instability. We also aim to characterise
the final saturated state of these unstable discs, although our adop-
tion of mainly axisymmetric simulations provides some restriction
in achieving this final aim.

We define the volume integrated meridional and radial kinetic
energies through the expressions

eθ =
1
2

�

V
ρv2
θdV, er =

1
2

�

V
ρv2

r dV (25)

When presenting our results we normalise these energies by the to-
tal kinetic energy contained in keplerian motion in the disc initially.

We begin discussion of our results below by describing sim-
ulations of locally isothermal discs for which T (R) ∼ R−q and
ρ(R) ∼ R−p. We describe one fiducial model in detail, before dis-
cussing briefly the influence of the temperature profile in control-
ling the instability. We present a comparision between results ob-
tained using the two codes described in Sect. 4, and also demon-
strate how the instability evolves as a function of disc viscosity.

The next set of results we present are for disc models in which
the initial temperature is a strict function of R, but we set γ = 1.4,
solve the energy in eqn. (1), and allow the temperature to relax
toward its initial value using eqn. (18). In this section, we exam-
ine how the thermal relaxation rate contols the instability, covering
the full range of thermodynamic behaviour from locally isothermal
through to isentropic.

In the penultimate part of our numerical study, we consider
disc models for which the entropy function, Ks, is a strict function
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Figure 5. Time evolution of the vertical centre of mass position for each
radial location in the disc for the fiducial model T1R–0 with H/R = 0.05.
Note that the vertical centre of mass position has been normalised by the
local scale height at each radius. Starting from bottom to top the plots cor-
respond to times (in orbits): 9 × 10−4, 9.18, 27.86, 65.00, 92.66. The multi-
plicative factor indicated in each legend causes the maximum amplitude of
the normalised c.o.m. position in each graph to equal unity.

of R, and again employ thermal relaxation to examine the condi-
tions under which accretion discs display the vertical shear instabil-
ity. The final numerical experiment we present examines the insta-
bility in a full 3D model, and provides an estimate of the Reynolds
stress induced by the instability.

We present an analytic model in the discussion section which
illustrates the basic mechanism of the instability and delineates the
conditions under which it operates.

5.1 A fiducial model

We begin presentation of the simulation results by discussing one
particular model in detail to illustrate the nature of the instability
that is the focus of this paper. The fiducial model is TR1–0 listed in
Table 1, with temperature, T , defined as a function of R only, and
p = −1.5 and q = −1 in eqns. (3) and (2). A locally isothermal
equation of state is adopted. As such, this disc model has param-
eters very similar to those used in numerous previous studies of
disc related phenomena (e.g. Kley et al. 2001; Cresswell & Nelson
2006; Fromang et al. 2011; Pierens & Nelson 2010), although we
focus primarily on the inviscid evolution here.

The time evolution of the normalised meridional and radial
kinetic energies defined in eqn. (25) are shown in Fig. 1. The in-
tial values at t = 0 originate from the seed noise, and we observe
that after ∼ 10 orbits, during which the perturbed kinetic energies
damp slightly, rapid growth of the perturbation energies arises. The
normalised energies reach non linear saturation after ∼ 400 orbits
having reached values of a few ×10−5. Inspection of the evolution
of the sum of the meridional plus radial kinetic on a log-linear plot
indicates that the linear growth rate of the perturbed energy in Fig. 1
is � 0.24 orbit−1.

Contour plots of vertical velocity perturbations, vZ , that arise
at different stages of the disc evolution are shown in Figs. 2 and
3. These two figures show the perturbed velocity field at identical
times, but whereas Fig. 2 maps linearly between the velocity values

c� 2002 RAS, MNRAS 000, 1–19

growth rate ∼ 0.24 orbit−1

Variation of τrelax10 Nelson, Gressel & Umurhan
Perturbed kinetic energy versus time 
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Figure 9. Time evolution of the normalised perturbed kinetic energy in the
meridional and radial coordinate directions for model T1R–0 with p = 1.5,
q = 1 and reflecting boundary conditions at the meridional boundaries. Each
curve corresponds to a different value of the imposed kinematic viscosity,
ν, as indicated.

ν = 10−6 corresponds to the Shakura-Sunyaev viscous stress pa-
rameter α = 4 × 10−4 at R = 1 (Shakura & Sunyaev 1973), and to
a Reynolds number Re = Hcs/ν = 2500). The results are shown in
Fig. 9, which shows the time evolution of the perturbed meridional
plus radial kinetic energies. As expected, the results have a strong
dependence on viscosity. For ν = 10−5 the instability is damped
completely, which explains why previous 3D simulations of locally
isothermal discs have not reported seeing the vertical shear insta-
bility (e.g. Kley et al. 2001; Cresswell & Nelson 2006; Fromang
et al. 2011; Pierens & Nelson 2010). For decreasing values of ν the
amplitude of instability increases, until at a value of ν = 10−8 there
is little difference between the result in Fig. 9 and the inviscid result
shown in the left panel of Fig.6.

Interestingly, it is found that in fully turbulent models where
the MRI is active throughout the disc and α � 0.01, the corruga-
tion instability is not observed (Fromang & Nelson 2006). We have
computed models similar to those presented in Fromang & Nel-
son (2006) and find that corrugation of the disc does not develop.
Although these MHD simulations adopt a significantly lower res-
olution than the pure hydrodynamic runs we have presented here,
we note that hydrodynamic runs performed at low resolution still
show the development of the instability even when the short ra-
dial wavelength perturbations of the initial growth phase are not
resolved. Instead, we find that the disc displays longer wavelength
breathing and corrugation modes that become unstable and cause
the disc to oscillate verically in quite a violent manner. In mag-
netised global disc models with dead zones whose vertical height
covers � 2.5 scale heights, which support Reynolds stresses in the
dead zone with an effective value of α � 10−4, the development
of these corrugation oscillations is observed in models that adopt a
locally isothermal equation of state with q = −1.

5.5 Thermal relaxation in models with T (R)

We now consider the evolution of models where we relax the lo-
cally isothermal assumption associated with the response of the
fluid to perturbations. We evolve the energy equation in (1), and
introduce thermal relaxation by integrating eqn. (18). We adopt

Perturbed kinetic energy versus time 
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Figure 10. Time evolution of the sum of the (normalised) perturbed radial
and meridional kinetic energy in discs where the temperature was initially
constant on cylinders, as a function of the thermal relaxation time. Note that
only the τRelax = 0 and 0.01 cases show growth.

the equation of state P = (γ − 1)e, and set γ = 1.4. The gas is
assumed to be inviscid. Power-law profiles for the initial tempera-
tures, T (R), and midplane density, ρmid(R), are adopted with q = −1
and p = −1.5 in eqns. (2) and (3). The aim of these models is to
examine the robustness of the vertical shear instability as a func-
tion of the thermal relaxation time, τrelax, defined in eqn. (18) and
expressed as a fixed multiple or fraction of the local orbital period.
These runs are labelled T5R–0.01 – T9R–∞ in Table 1.

The evolution of the normalised perturbed kinetic energies for
a number of models with relaxation times in the range 0 � τrelax �
∞ are plotted in Fig. 10. It is immediately obvious that instability
only occurs in either the locally isothermal case (τrelax = 0) and
when τrelax = 0.01 orbits. All other simulations result in the per-
turbed kinetic energy contained in the initial seed noise decaying
with time. We note that the case of τrelax = ∞ is directly compara-
ble to a previous study on the adiabatic evolution of a stratified disc
by Rüdiger et al. (2002). The authors considered the hydrodynamic
stability under the Solberg-Høiland criterion and also find stability
in this case.

Our results indicate that the vertical shear instability requires
that the initial temperature profile of the fluid is re-established
rather rapidly during dynamical evolution, at least for the equilib-
rium temperature and density profiles adopted in these particular
models.

The requirement for near-isothermal evolution suggests that
the vertical shear instability is most likely to operate in the opti-
cally thin regions of astrophysical discs whose global properties
are similar to those considered here. For example, the outer regions
of protoplanetary discs lying beyond ∼ 100 AU may be prone to
this instability, provided that MHD turbulence is present at low
enough levels that the instability is not damped by the turbulent
viscosity. This seems ti be a likely prospect given that low density
regions may be stabilised by ambipolar diffusion(Armitage 2011).
It should also be noted, however, that the simple thermal relaxation
model we employ does not capture the fact that the thermal evolu-
tion time of a mode with radial wavelength λR scales as ∼ λ2

R/D
(where D is the thermal diffusion coefficient), such that very short
wavelength modes may remain unstable in optically thick discs. A
reduction in spatial scales on which the instability operates, how-
ever, will presumably affect the resulting turbulent flow and reduce

c� 2002 RAS, MNRAS 000, 1–19

Important Clue: radial velocities dwarfed by vertical velocities
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Dependence on ε = H/R
Vertical shear instability in discs 11

difference between the result in Fig. 9 and the inviscid result shown
in the left-hand panel of Fig. 6.

Interestingly, it is found that in fully turbulent models where the
MRI is active throughout the disc and α ! 0.01, the corrugation
instability is not observed (Fromang & Nelson 2006). As part of
this project, we have computed models similar to those presented
in Fromang & Nelson (2006) and find that corrugation of the disc
does not develop. Although these MHD simulations adopt a signif-
icantly lower resolution than the pure hydrodynamic runs we have
presented here, we note that hydrodynamic runs performed at low
resolution still show the development of the instability even when
the short radial wavelength perturbations of the initial growth phase
are not resolved. Instead, the disc displays growth of the longer
wavelength breathing and corrugation modes that eventually cause
the disc to undergo violent vertical oscillations. This suggests that
the short-wavelength finger modes discussed earlier in the paper are
not actually required for the disc to achieve a highly disturbed state.
In magnetized global disc models with dead zones whose vertical
height covers !2.5 scaleheights, which support Reynolds stresses
in the dead zone with an effective value of α ! 10−4, the devel-
opment of these corrugation oscillations is observed in models that
adopt a locally isothermal equation of state with q = −1.

5.5 Evolution as a function of H/R

As discussed later in Section 6.1, a linear analysis of the vertical
shear instability predicts that the ratio vZ/vR scales as ∼(H/R)−1,
such that we expect eθ/er ∼ (H/R)−2. Indeed, we show that this scal-
ing is implicit within the original analysis of Goldreich & Schubert
(1967). Here, we present a suite of high-resolution simulations that
examine this scaling. We consider disc models with H/R = 0.1, 0.05,
0.03, 0.02 and 0.01. These models are labelled T5R-0 to T9R-0 in
Table 1. The radial domain for each run covers just 5 scaleheights,
and the full vertical domain covers 10 scaleheights (±5H about
the mid-plane). Given that we wish to examine the evolution of
eθ/er from the earliest stages of linear growth, we have reduced the
amplitude of the initial seed noise from 0.01cs down to 10−6cs.

The growth of (er + eθ ), normalized to the kinetic energy in
Keplerian motion, is shown in the left-hand panel of Fig. 10. We
clearly see that the growth times increase with decreasing H/R
as expected from linear theory (see Section 6.1). The right-hand
panel shows the growth of the perturbed kinetic energy for the
H/R = 0.05 case in a log–linear plot. The dashed line shows the
gradient expected for a growth time equal to two orbital periods,
and we can see that during the earliest phase of linear growth, the
growth time is slightly smaller than this (approximately 1.7 orbital
periods) and increases as the disc evolves. If we compare this with
the H/R = 0.05 fiducial model, T1R-0, discussed in Section 5.1, for
which the initial velocity perturbations were stronger (∼0.01cs, see
Fig. 1), we notice that the linear growth phase for the model with
smaller perturbations lasts longer. Furthermore, the growth time
for this model during the early linear phase is found to be shorter
than reported for model T1R-0, where a growth time of ∼4 orbits
was reported. One possible explanation for this is that the smaller
amplitude initial perturbations allow for a different set of modes to
grow in the disc at early times that have higher growth rates than the
fundamental breathing and corrugation modes that characterize the
later stage evolution. Indeed, the linear perturbation analysis that we
present in Section 6.2 predicts that fundamental corrugation modes
will have growth times of ∼4 orbits, and fundamental breathing
modes will have growth times of ∼2.5 orbits. The fastest growing
body modes, however, are predicted to be the first overtone breathing

Figure 10. Left-hand panel: time evolution of the perturbed meridional plus
radial kinetic energies (normalized) as a function of the disc thickness H/R.
Right-hand panel: time evolution of the perturbed meridional plus radial
kinetic energy (normalized) for the H/R = 0.05 run T8R-0. The dashed
line shows the gradient expected for a linear growth time equal to 2 orbits.
Lowest panel: maximum ratio of the volume-integrated meridional to radial
kinetic energies versus H/R during the runs described in the text.

mode and the second overtone corrugation mode, with growth times
of ∼1.7 orbits. We note that this latter growth time is very similar
to that measured during the earliest linear growth phase in the right-
hand panel of Fig. 10.

Returning to the question of how eθ/er scales with H/r, the
lower panel in Fig. 10 shows the maximum value of eθ/er obtained
during each simulation, represented by the black dots. The red
line represents a by-eye fit that scales with (H/R)−2, demonstrating
that the vertical-to-radial energy ratio approximately follows this
scaling in the simulations, in agreement with the analysis presented
in Section 6.1.

Contour plots of vZ for the run with H/R = 0.05 are shown
in Fig. 11 at three different times. This figure has already been
discussed briefly in Section 5.1, where the appearance of both high-
latitude finger modes and lower latitude body modes was brought
to attention. This behaviour is seen in all models with different
H/R, although the distinct appearance of the two types of modes is
most clearly seen in thicker discs. The model with H/R = 0.01, for
example, shows evidence for the coexistence of the two mode types,
but their distinct character is not so easy to discriminate in that run.
We further comment that the first panel in Fig. 11 shows that in
the outer regions of the disc, there is evidence for the first overtone
breathing mode being present at early evolution times. As discussed
above, according to the linear theory presented in Section 6.2, this
mode is expected to grow before the other body modes, so its
presence in the disc is expected. At earlier evolution times than
shown in Fig. 11, we find that its presence can also be discerned
in the inner disc regions, supporting our conjecture that the rapid
linear growth of the perturbation energy at early times observed
in the right-hand panel of Fig. 10 may arise because of the early
growth of this mode. The evolution of velocity perturbations appears
to follow the predicted pattern of first overtone breathing modes
arising first, followed by fundamental breathing modes, with the late
linear phase and non-linear phase being dominated by fundamental
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• Energy ratios scale as ε2.
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Stripped down model exposing instability

• numerically guided asymptotic analysis

time−1 ∼ Ω0H0/R0, `R ∼ (H0/R0)
2R0, `z ∼ H0, and vR � vZ ,

for τrelax → 0 and q 6= 0

• examined around fiducial radius R = R0 where T = T0 ⇐⇒ c2
s0

−2Ω0v = −c2
s0∂r ln ρ Radial Geostrophy!!

dv
dt

+ 1
2 Ω0vR +

∂V̄
∂z

w = 0 Azimuthal Mom

dvZ

dt
= −c2

s0∂z ln ρ Vertical Mom

∂ρ̃vR

∂r
+
∂ρ̃vZ

∂z
= 0 Anelastic Eqn.!!

with ρ̃ = exp(−z2/2H2
0).
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linear theory and perturbation analysis

linear perturbations ρ→ ρ0 + ρ′

Inseparable equation in r and z!!

∂2

∂r2

∂2ρ′

∂t2 +
∂2ρ′

∂z2 =

(
1 + q

∂

∂r

)
z
∂ρ′

∂z

double instability !! (kq > 1)

solution modes of the inseparable “form":

ρ′ = ρ(m, k) ∼
∑m

j=1 est+jr/s2
cos krHj(z)

where m are integer indices > 0:

s2
= (m/k2

)

(
−1±

√
1− q2k2

)

maximal growth rates (our sims: q = −1,H0/R0 = 0.05)

radial scale of max growth : `r = π|q|
(

H0

R0

)2

R0 =⇒ 0.008R0

growth rate of max growth in KE : s(KE)
max = 2smax =

√
2mπ|q|

(
H0

R0

)
orbit−1

=⇒ 0.22
√

m orbit−1
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Another variant linear theory calculation:

• Assume separable solution: ρ ∼ est+ikxH(z). σ(k)→ ±
(
|σr| ± i|σi|

)
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Secondary verification via “Large Shearing Box" experiments

Large Shearing box equations

Spectral calculations/ axisymmetric

[Lx , Ly ] = [10, 10] ⇐⇒ 5122

Use sponges = 1/10 domain size

vertical gravity/ temperature
periodic

hyperviscosity ∇16

Additional Results/Insight

• Robust results
• Rightward drift of patterns
• Episodic angular momentum
transport
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A movie depicting LSB runs with ε = 0.2

LSB run (field quantities)
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Another movie depicting same LSB run with ε = 0.2: Vorticity and Dilatation

LSB run (vorticity/dilatation)
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Another movie depicting same LSB run with ε = 0.2: Energy and Transport

LSB run (energy/transport)
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Reynolds Stress Outward Transport
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~ 2 × 10−4

tertiary acoustic instability (??)
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Application to PP-Disks - is this relevant?

Radiative Diffusion Cooling Times ⇐⇒ Disturbance
length scales `R and disk position

• Using typical protoplanetary disk properties cooling times due to rad.
diffusion are

τrelax/Porb = 169F2
(
κR/cm2/g

)
(`r/R)2 (R/20 AU)−53/14 , Porb ≡ 2π/ΩK ,

Where F ↔ disk mass relative to solar disks (e.g. Chiang and Goldreich
1999),
κR ↔ mean opacities (near 1cm2/gm).
• For `r ∼ 0.01R0 GSF Operates in disks where R > 15− 20AU
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Non-axisymetric numerical experiments:
Vertical shear instability in discs 13

Figure 15. Perturbed density, δρ/ρ in the merdional plane at φ = π/8 (upper three panels) for the 3D simulation T1R–0–3D. Note that we have effectively
stretched the grey-scale by plotting the quantity sign(δρ) × |δρ/ρ|1/4 in the upper panels. The lower panels show the relative density perturbations δρ/ρ at the
disc midplane. No grey-scale stretching has been applied to these lower panels.

anelastic and radially geostrophic - by the latter expression we
mean to indicate dynamics which are in constant radial force bal-
ance between Coriolis effects and pressure gradients. Furthermore,
despite the varied simplifications we make to expose the essence of
the physical process, the fundamental equations describing the re-
sulting linearised response remain inseparable in the radial and ver-
tical coordinates. This means that the only recourse in establishing
any insight is through a further approximate solution of the result-
ing reduced equations. We find that the solution indicates that for
given parameters describing disturbances the instability appears in
pairs, as opposed to appearing individually as indicated by (27).
Although we have not proved it in this study, we conjecture the
powerful driving of the instability in the simulations may be, in
part, caused by this feature.

6.1 Equations of motion revisited and steady states rederived

The equations of motion for axisymmetric inviscid dynamics in a
cylindrical geometry are given by
�
∂

∂t
+ U

∂

∂R
+W

∂

∂Z

�
U − V2

R
= −1

ρ

∂c2
sρ

∂R
− ∂Φ
∂R
, (28)

�
∂

∂t
+ U

∂

∂R
+W

∂

∂Z

�
V +

UV
R

= 0, (29)

�
∂

∂t
+ U

∂

∂R
+W

∂

∂Z

�
W = −1

ρ

∂c2
sρ

∂Z
− ∂Φ
∂Z
. (30)

Note that the (R, φ, Z) velocity components are given here by
(U,V,W). We dispense with the subscripted scheme (vr, vφ, vZ) used
in previous sections in order to simplify the notation. The corre-
sponding equation of mass continuity is

∂ρ

∂t
+

1
R
∂RρU
∂r

+
∂ρW
∂Z
= 0. (31)

As mentioned above, we focus here on dynamics that are locally
isothermal with an infinitely short cooling time (τrelax → 0). This
then is to be considered in the context of simulations T1R–0 to
T4R–0 summarized in Table 1. Reciting therefore from Section 2: it
means that the square of the sound speed is given by c2

s = c2
0(R/R0)q

where R0 is the fiducial reference disc position and c0 is the scaled
sound speed at that point. The gravitational potential emanating
from the central object is Φ = −GM/(R2 + Z2)1/2.

The general equilibrium state solutions are found in eqns.
(12)-(13) but, as we mentioned earlier, perturbations superposed
on this base state are difficult to analyse because the resulting equa-
tions are fundamentally inseparable so that a typical normal-mode
analysis is out of the question. In order to facilitate some kind of
tractable analysis we make the one and only approximation here:
the radial and vertical gradients of the potential Φ are expressed in
terms of their corresponding first order Taylor Series expansions,
i.e.

∂Φ

∂R
≈ −GM

R2
0

�R0

R

�2
= −Ω2

0R0

�R0

R

�2
,

∂Φ

∂Z
≈ −GM

R3
0

�R0

R

�3
Z = −Ω2

0

�R0

R

�3
Z,

in which Ω0 = (GM/R3
0)1/2 is the reference keplerian rotation rate

at radius R0. The midplane density is chosen to be of the form
ρmid = ρ0(R/R0)p where ρ0 is the reference density and where p is
an arbitrary index (as referenced earlier). In the following analysis
it will be convenient for our discussion to refer to the natural loga-
rithm of the density instead of directly to the density itself, thus, we
define Π ≡ ln ρ. Because we shall be concerned with perturbations
around the steady states implied by the above equations we shall

c� 2002 RAS, MNRAS 000, 1–19

vortex production in-plane =⇒
Outward angular momentum Transportage!
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Nonaxisymmetric response - Baroclinic RWI driven by this mechanism?

Transport Properties

Effective “α"

∼ 2× 10−3

Distribution around midplane

Next Stages:

Sort out linear theory of competing
instabilities

Further examine the requirement
that thermal relaxation times must
be short!

Verification via other means (see
next section)

Transport Map
12 Nelson, Gressel & Umurhan

Normalised Reynolds stress versus time 
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Figure 13. Time evolution of the volume averaged Reynolds stress (nor-
malised by the mean pressure) for the full 3D simulations T1R–0–3D

quantity is computed as follows. We define an azimuthally aver-
aged Reynolds stress TR(r, θ) obtained by averaging the quantity
ρδvRδvφ over azimuth. Here δvR and δvφ are the local radial and
azimuthal velocity fluctuations. We also define a density-weighted
mean pressure as a function of r, P(r), obtained by averging over
θ and φ. We define a local value of the Shakura-Sunyaev stress pa-
rameter α(r, θ) = TR(r, θ)/P(r). The simple average of α(r, θ) over
r and θ is the quantity plotted in Fig. 13.

Although rather noisy, we see that the normalised stress ap-
proaches average values ∼ 6 × 10−4 by the end of the simulation
(and appears to be still growing at this point). The spatial distribu-
tion of α(r, θ), time averaged during the last 10 orbits of the run, is
shown in Fig. 14. Here we see that local values of the stress reach
∼ 2 × 10−3, indicating that the vertical shear instability generates a
quasi-turbulent flow capable of supporting significant outward an-
gular momentum transport in astrophysical discs, given favourable
conditions for its development.

The upper panels of Fig. 15 show contours of the perturbed
density, δρ/ρ0 in a slice parallel the meridional plane at three differ-
ent times during the simulation, showing similar features to those
presented for the 2D-axisymmetric simulation in Fig. 5. Perhaps
more interesting are the lower panels of Fig. 15 which show the ac-
tual density ρ in the (R, φ) plane located at the disc midplane. Here
the development of spiral density waves may be observed, similar
in morphology to those that arise in discs where turbulence is driven
by the MRI (e.g. Papaloizou & Nelson 2003). The 3D simulation
presented here suggests that if the appropriate conditions prevail in
astrophysical discs, the vertical shear instability may lead to a tur-
bulent flow capable of supporting significant angular momentum
transport.

6 THEORETICAL CONSIDERATIONS

The GSF instability appears by rendering the inertial modes of a
rotating atmosphere unstable. The original analysis in Goldreich
& Schubert (1967, GS67 hereafter) demonstrated the possibility of
this instability by performing a point analysis at a given location in
a stellar radiative zone away from the equator, equivalent to consid-
ering a location away from the midplane in a disc. In this section
we examine the mathematical structure of the instability by further

Figure 14. Spatial distribution of the time and horizontally averaged
Reynolds stress (normalised by the mean pressure at each radius) for the
model T1R–0–3D.

extending previous analyses, including those of Urpin (2003) and
Arlt & Urpin (2004), by relaxing the point assumption.

We shall focus on disturbances which are locally isothermal.
For the sake of completion of this important discussion we redo
the original point analysis of GS67 in Appendix A, but without in-
troducing the Boussineq approximation. Denoting σ as the growth
rate we find that the inertial mode response is roughly given by

σ2 =
−κ20(c2

0k2
z + N2

0 ) + 2Ω0c2
0krkz

∂V̄
∂z

c2
0(k2

z + k2
r ) + κ20 + N2

0

, (26)

in which c0 is the reference sound speed, κ0 is the epicyclic fre-
quency which, for a keplerian disc, is given by Ω0, the local kep-
lerian rotation rate at the point in question. kz and kr are the corre-
sponding vertical and radial disturbance wavenumbers respectively.
The local Brunt-Vaisaila frequency is N0 and ∂V̄/∂z is the vertical
gradient of the mean keplerian flow. This quantity typically scales
on the order of magnitude of (q/2)Ω0(H0/R0) where q is the same
exponent of the radially varying isothermal sound speed discussed
in Section 2. Supposing for this discussion that N0 is negligible it
follows from this expression that if H0/R0 is small then instability
can only happen if the radial wavenumber conspires to be corre-
spondingly large. In that limit the above expression implies

σ2 ∼ 2Ω0
kz

kr

∂V̄
∂z
− κ20

k2
z

k2
r
, (27)

indicating that instability is possible if kz/kr ∼ O (qH0/R0). The
analysis of Arlt & Urpin (2004), for example, also similarly in-
dicates that for the same rough conditions the growth rate ought
to scale as O (qΩ0H0/R0). The simulations we have performed are
consistent with this tendency where the radial length scales of the
emerging structures are significantly shorter than the vertical ones
with growth rates of the instability on the order of 4 orbit times for
H0/R0 ∼ 1/20 and q = −1.

Our goal is to develop a better physical understanding of the
processes responsible for this instability beyond invoking Solberg-
Høiland criteria. In this respect we notice from Figure 1 that radial
velocity fluctuations are considerably smaller in magnitude than the
corresponding meridional velocities.

With these clues in mind, we show in the following how
the processes involved in bringing about the instability is largely

c� 2002 RAS, MNRAS 000, 1–19
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Summary of Part I.

GSF instability possible in Dead Zones of Disks
Axisymmetric instability strongest
Relevant in media/scales with short “effective" cooling times.
Saturated state - outward drifting vertical jets
Linear transition: small radial length scales: Radially
geostrophic, anelastic dynamics
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Motivation

Axisymmetric saturated state is steady in
moving frame

Simulations show unsteady incomplete vortex
roll-up

HYPOTHESIS

Are the weak secondary rolls due to a variant
of one (or more) canonical shear instabilities?

HYPOTHESIS

Can the secondary transition be depicted in a
stripped-down model representing the primary
instability as an external forcing term?

Vorticity

=⇒ ω ≡
∂u

∂z
−
∂w

∂x
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Proposed model to capture axisymmetric physics at saturation

Simplified Model (by fiat)

Eqns. in rotating frame with b/g shear VKep = −Ω0qx. and constant density:

du
dt
− 2Ω0v = −∂Π

∂x
,

dv
dt

+ Ω0(2− q)u = 0 + Fv , Fv ≡
1
τ

(
V− v

)
dw
dt

= −∂Π

∂z
+ Fw , Fv ≡

1
τ

(
W− w

)
∂u
∂x

+
∂w
∂z

= 0.

Rayleigh Drag Models Fv and Fw ⇐⇒ Metaphor for Primary “GSF" Instability

Time scale τ represents growth rate of primary instability, V(x) and W(x)
denotes the saturation profiles of the instability. These are placed by hand.
(H.O.G.)
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Analog to Stratified Systems (Leibowicz - 1979)

azimuthally sheared axisymmetric flow

dw
dt

= −∂Π

∂z
,

du
dt

= −∂Π

∂x
+ 2Ω0 v,

dv
dt

= −
[

dV(x)

dx
+ (2− q)Ω0

]
u

0 =
∂u
∂x

+
∂w
∂z

v is the analog variable to entropy

⇐⇒

⇐⇒

⇐⇒

⇐⇒

vertically stratified (Boussinesq) fluid

du
dt

= −∂Π

∂x
,

dw
dt

= −∂Π

∂z
+ gαS,

dS
dt

= −dS(z)
dz

w

0 =
∂u
∂x

+
∂w
∂z

where S is specific entropy.

u↔ w, w↔ u, and v↔ S in this correspondence.
•=⇒ all theorems of stratified shear flows carry over correspondingly⇐=.
• “Shear in azimuthal velocity akin to vertical entropy gradient"
• Merely a reinterpretation of centrifugally driven flows.
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Part II. Examination of Secondary Axisymmetric Transition

Setup and preliminaries
Test Profiles
Linear Theory

Necessary criteria for instability - I.

In the absence of any additional shear, then if a mode is
unstable then it must be true that somewhere in the domain the
following happens:

Correspondence b/w Inviscid Rayleigh Criterion and Unstable Stratification

For axisymmetric rotating flow

ω2
ε
≡ 2Ω2

0

[
Ω0 (2− q) +

dV
dx

]
< 0

Inviscid Rayleigh Criterion

For stratified flow

N2 ≡ gαS

dS
dz

< 0

Criterion for Buoyant Instability

=⇒ No news here.
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Background and Updates
Part I. Goldreich-Schubert-Fricke Instability for Disks

Part II. Examination of Secondary Axisymmetric Transition

Setup and preliminaries
Test Profiles
Linear Theory

Necessary criteria for instability - II.

For a flow of the above type also characterised by some
additional base shear, then if there is instability it must be true
that somewhere in the domain the following is valid

Effective Richardson Criteria and its analog

For axisymmetric rotating flow
With radial shear of vertical flow W(x):

2Ω2
0

[
Ω0 (2− q) +

dV
dx

]
<

1
4

(
dW
dx

)2

Analog Richardson Criterion

For stratified flow
with vertically sheared
horizontal flow U(z)

N2 <
1
4

(
dU
dz

)2

Richardson Criterion
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Background and Updates
Part I. Goldreich-Schubert-Fricke Instability for Disks

Part II. Examination of Secondary Axisymmetric Transition

Setup and preliminaries
Test Profiles
Linear Theory

Shearing Sheet Results - Reprise

Minimal Model Configuration

Try to find a simplified setup that captures quality of observed transition.
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Background and Updates
Part I. Goldreich-Schubert-Fricke Instability for Disks

Part II. Examination of Secondary Axisymmetric Transition

Setup and preliminaries
Test Profiles
Linear Theory

Richardson Criterion: 8Ω0(Ω0(2− q) + dV/dx)− (dW/dx)2 < 0

x/H0

z/
H

0

Analog Richardson Measure: 4t
¡
2 − (dW/dx)2
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Background and Updates
Part I. Goldreich-Schubert-Fricke Instability for Disks

Part II. Examination of Secondary Axisymmetric Transition

Setup and preliminaries
Test Profiles
Linear Theory

Quasi “Holmboe Type" -I. Setup

Rayleigh profile with stable azimuthal velocity jump

Stable jump in V(x)
like stable stratification

Rayleigh Profile

=⇒ “Holmboe-like" config.

“total V" Lagrangian conserved

dV
dt

= 0, V ≡ Ω0(2−q)x+v(x, t)

for τ →∞
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Background and Updates
Part I. Goldreich-Schubert-Fricke Instability for Disks

Part II. Examination of Secondary Axisymmetric Transition

Setup and preliminaries
Test Profiles
Linear Theory

Quasi “Holmboe Type" - II. Results
• “Short" cooling time results τ = 10.
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Background and Updates
Part I. Goldreich-Schubert-Fricke Instability for Disks

Part II. Examination of Secondary Axisymmetric Transition

Setup and preliminaries
Test Profiles
Linear Theory

Quasi “Holmboe Type" - III. Results

A movie depicting “Holmboe-type" flow at τ = 17.5
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Background and Updates
Part I. Goldreich-Schubert-Fricke Instability for Disks

Part II. Examination of Secondary Axisymmetric Transition

Setup and preliminaries
Test Profiles
Linear Theory

Quasi “Holmboe Type" - IV. frames

“Quiet"

“Bursty"
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Background and Updates
Part I. Goldreich-Schubert-Fricke Instability for Disks

Part II. Examination of Secondary Axisymmetric Transition

Setup and preliminaries
Test Profiles
Linear Theory

Quasi “Holmboe Type" - IV. Spectra

101 102

10−5

10−4

10−3

10−2

|k|

E(
k)

Kinetic Energy Spectra: (Nx x Nz = 394x256)

k−5/3

k−5/3Spectrum during
‘‘Bursty" Phase

k−3

Spectrum during
‘‘Quiet" Phase

|k| = kdiss= 65

Note: these are effectively ‘‘T85" simulations
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Background and Updates
Part I. Goldreich-Schubert-Fricke Instability for Disks

Part II. Examination of Secondary Axisymmetric Transition

Setup and preliminaries
Test Profiles
Linear Theory

Jet (“Jetboe") -I. Setup

Jet profile with stable azimuthal velocity jump “The Jetboe"? :)
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Background and Updates
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Part II. Examination of Secondary Axisymmetric Transition

Setup and preliminaries
Test Profiles
Linear Theory

Jet (“Jetboe") -II. Results
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Background and Updates
Part I. Goldreich-Schubert-Fricke Instability for Disks

Part II. Examination of Secondary Axisymmetric Transition

Setup and preliminaries
Test Profiles
Linear Theory

A movie depicting “Jetboe" flow at τ = 10

A Jetboe Experiment
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Background and Updates
Part I. Goldreich-Schubert-Fricke Instability for Disks

Part II. Examination of Secondary Axisymmetric Transition

Setup and preliminaries
Test Profiles
Linear Theory

Interpret instability as a sequence of transitions
associated with interacting Rossby Edgewave
dynamics.
Can use the recently developed “Kernal Gravity Wave"
perspective to interpret the instability complex here.
In development now....sorry nothing to show here yet.
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