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Outline
» SNla as incineration of white dwarf
» Combustion modes and challenges for modeling them

» Two proposed scenarios for thermonuclear supernovae



Ejecta Abundance Profile
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SN2002bo from Stehle et al. 2005, MNRAS, 360, 1231

From spectra at different times
infer material in ejecta.
Mostly spherical structure.

» Model from Nomoto et al.
1984, case "WT7" from
various cases of reaction
front propagation through
1.4 M, carbon-oxygen white
dwarf

» Provides a surprisingly good
match to gross structure of
ejecta.

» Gives a basic sucessful
explosion paradigm:
Thermonuclear inceration of
a white dwarf star.



(Murky) Binary Origin of SN Ia
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Exact origin (or origins) of WD supernovae unclear
(there are more complex cases than shown too)



If one can incinerate a white dwarf " just right” one gets something
like observed SN la or SN lax.
The devil is in the details - how and why?

Combustion modes:
» Detonation - supersonically propagating reaction front

» Deflagration - subsonically propagating reaction front



Detonations

Burning occurs behind a propagating
supersonic shock

Temperature

» Heat release supports onward

|

== , propagation of shock
i \ 7 » Only a small subset of nuclides
f“ ST Demsiy E shown

|

(actually 200 in this calculation)

Pre-shock values

» Burning structure manifest at a
/ N wide range of scales from microns
to kilometers

/
o

» 3 main stages: (also in
deflagration)
C consumption
~~

\ O consumption
0.0001 Zuw‘m sl il ol sl sl RN Si — Fe-group
10

10" 10" 10" 100 100 10t 10 10° 10
Distance behind shock (cm) » Si results from "incomplete”

burning

vl A7l

Mass fraction

0.001




Detail of detonation structure

Now a Helium detonation, mostly resolved:
(can't do every simulation like this!)

A single hot layer case in plane parallel, constant gravity
Investigate steady-state structure of detonation

DB: wdhedet_hdf5_plf_cnf_3894 DB: wdhedet_hdfS_plt_cnt_3884
Cycle: 6205 ~ Time:0.778911 Cycle: 6189  Time:0.776887
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http://pages.astronomy.ua.edu/townsley/gallery/talks/kitp_20210330/hesurfdet_d5e5_g2e8_temp_mach.mp4
http://pages.astronomy.ua.edu/townsley/gallery/talks/kitp_20210330/hesurfdet_d5e5_g2e8_he4_mach.mp4

Deflagration Front

Thermonuclear burning begins with
subsonic propagating flame front.
(negligible pressure jump across
burning front)
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Timmes & Woosley 1992, ApJ, 396, 649 .
» viscous cutoff scale small

compared to flame width



Flame is Wrinkled to Small Scales
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Wrinkling of Flame

Buoyantly unstable flame rising through a channel (very wrinkly)



http://pages.astronomy.ua.edu/townsley/gallery/talks/kitp_20210330/rt256_s6_left_1920x0180.mp4

Now have the pieces, lets make something out of them!



A Couple of Current Leading Scenarios

Two leading proposed scenarios:

» Helium-ignited Double Detonation
» Sub-Chandrasekhar mass WD
» Notable recent "improvements”
» Deflagration model for SN lax

» Deflagration only
» Near Chandrasekhar mass WD

Not the only scenarios!
Note "classic” Deflagration-Detonation Transition (DDT) model.

Also important whether the binary star system is a WD-WD
system or a WD-normal star system.



Helium Ignited Double Detonation
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http://pages.astronomy.ua.edu/townsley/gallery/doubledet_overview_d3e5_m1.mp4

Double Det: Pros and Cons

Pros:
» Easier to make white dwarf star (only 1M, or so)

Cons:

> H b Eaitad . . r |

All these have been overturned in the last decade!



Thin shells realistic and spectra

Comparison of spectra from various
viewing angles: (Grey is actual
normal SN la)
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Townsley et al. (2019, ApJ, 878, L38)

normal

Thin He shells enriched in

1 nitrogen (CNO burning ashes)

can host detonation while not

{ producing Ti & Cr (would
4 make spectrum too red).

» Can host detonation

» Spectroscopically normal

1 Thick shells are still

spectroscopically peculiar



Brightness-Decline Rate Relation is Normal

Comparison of peak brightness and
decline rate (Sedona and CMFGEN
different radiative transfer
computations):

When ionization and atomic
level populations computed

(not assumed to be in local

thermal equilibrium) Phillips
relation is reproduced.
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Diversity of Si line velocity

Comparison of blueshift of dominant
Si line: (Shading = lines of sight)

Si shell is at higher velocity on
He ignition side of ejecta and
for higher mass WDs.
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Full deflagrations as candidates for SN lax
(SN la with lower peak luminosity and lower velocities)



Deflagration-only

6000 km

Time sequence of burned material:

Deflagration only burns incompletely
» Chandrasekhar mass WD
> Mixed ejecta

20000 km

> Less ejecta

» Bound remnant

Fink et al. 2014, MNRAS, 438, 1762
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Spectra compare well to SN lax

Spectra from cases with stronger and
weaker deflagrations:
(Gray normal SNIa, Black SNlax)

Deflagration only burns incompletely =

» Chandrasekhar mass WD
> Mixed ejecta
P Less ejecta
» Bound remnant
Fink et al. 2014, MNRAS, 438, 1762
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Summary

» Type la supernovae well understoood as thermonuclear
incineration of white dwarf star. Explains brightness and
spectrum in detail

» Some combination of supersonic (detonation) and subsonic
(deflagration) combustion

» Double detonation scenario captures many features of SNla,
while deflagrations capture many of SNlax

» There are other scenarios and other classes as well
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