

THE UNIVERSITY of EDINBURGH

Constraining the Initial-Final Mass Relation of White Dwarf Stars

D A Crake, R G Mann & N C Hambly

Dennis Crake

Edinburgh PhD Seminar 2022

The Initial-Final Mass Relation

- Acts as a ground truth for evaluating stellar evolution models.
- Current version have 79 examples from 13 star clusters.
- We aim to drastically increase the census of White Dwarfs and produce a scalable pipeline for future telescopes.

J D Cummings et al. (2019)

Pipeline Architecture

- Final Mass is an observable value. [Fusillo et al. (2021)] Initial mass requires:
- The removal of spurious sources.

Dennis Crake

- Identifying stellar clusters with clustering algorithms.
- Total age of identified clusters must be obtained.
- Using WD cooldown models provides WD lifetime.
- Finally, Initial mass inferred by Mass-Lifetime Relations.

Identifying Stellar Clusters

Credit: NASA

Dennis Crake

 Our target stellar clusters and co-moving groups form from a single cloud collapse history.

• The clustering phase of our work is influenced by the work within Kounkel & Covey (2019).

 The clustering algorithm selected is HDBSCAN, which has significant computational requirements at scale.

 This work aims to remain scalable and repeatable, thus human input must be minimised.

Introducing: HEADSS

Base Layer		

Stitching Map for N = 3 Base Cut

Dennis Crake

Quaternary Layer

- HiErArchical Data Splitting and Stitching (HEADSS) is a scalable solution to big data clustering.
- This is an original package that distributes big data clustering with smaller node requirements.
- Removed edge effects through overlapping regions and merging large clusters.

Clustering Results - HEADSS

Dennis Crake

- Slicing a 2D sample of the data reveals the regions.
- Using the HEADSS stitching capabilities optimally merges the regions.
- After stitching we identify ~3000 candidate stellar clusters and comoving groups.

Stitched Results

Dennis Crake

KITP, White Dwarfs from Physics to Astrophysics 2022

Removing Unsuitable Clusters

- Kounkel & Covey (2019) estimate 5-10% of clusters are contamination.
- To identify these, we study the clusters in Colour - Magnitude space.
- Hough Transformations identify 100 the edges of known population features.

finally, colour - magnitude space with identified hough lines displayed (right)

Active Learning Results

Dennis Crake

Pipeline Architecture

- Final Mass is an observable [Fusillo et al. (2021)] Initial mass requires:
- The removal of spurious sources.
- Identifying stellar clusters with clustering algorithms.
- Total age of identified clusters must be obtained.
- Using WD cooldown models provides WD lifetime.
- Finally, Initial mass inferred by Mass-Lifetime Relations.

Dennis Crake

Ageing Clusters

Dennis Crake

- The lifetime and magnitude of a star is related to it's mass.
- Using this relation it is possible to age clusters by identifying the Main Sequence turn off mass.
- Typically, this is done through Bayesian fitting of isochrones, however this is computationally heavy.
- In this project we have developed a Neural Network to estimate the cluster ages.

Ageing Clusters - Results

- The clusters are sampled causing larger scatter in the results.
- Less accuracy for younger clusters due to sparse stellar population of high mass stars.
- The earliest WD stars will have progenitor masses $\sim 8M_{\odot}$, thus clusters less than ~7.5 dex will not contain any WD stars.

White Dwarf Cooldown Models

Dennis Crake

- Cooldown models provided by: Bergeron et al.*
- Complications through unusual events such as Crystallisation interfere with cooldown curves.
- Small surface area allowing them to radiate over vast timeframes.
- There is currently a debate about whether or not White Dwarfs are truly inert bodies.

* Models available: https://www.astro.umontreal.ca/~bergeron/CoolingModels/

The IFMR.

Dennis Crake

INAGE **COMING SOON**

Conclusion

- Final Mass Relation of White Dwarf stars.
- on limited resources through HEADSS.
- Eagerly await the final IFMR results in the coming weeks...

Thank you for listening.

Dennis Crake

We have (almost) developed a scalable approach to creating the Initial-

• Introduced a scalable and repeatable method for clustering large datasets

Pipeline Architecture

- Final Mass is an observable value. [Fusillo et al. (2021)] Initial mass requires:
- The removal of spurious sources.
- Identifying stellar clusters with clustering algorithms.
- Total age of identified clusters must be obtained.
- Using WD cooldown models provides WD lifetime.
- Finally, Initial mass inferred by Mass-Lifetime Relations.

Dennis Crake

Removing Spurious Sources

Dennis Crake

- Need to remove spurious astrometric sources to accurately cluster the sources.
- Initial spurious sources are defined as: parallax over error < -4.5.
- A ML model is trained using the above as a training set of spurious sources.

Spacial Distribution of QC Training Data

Good Sources

Good data is defined as data from HEALpix pixels that contain no bad data points.

Dennis Crake

Spurious Sources

 10^{0}

Bad data points is defined as any source with significantly negative values: parallax_over_error < -4.5.

Removing Spurious Sources

- Our model analyses objects within 3kpc
- Due to their lack of brightness, we find no examples of the WD population beyond 1kpc.
- After our model is applied, the expected structure in the HR diagram returns.
- In contrast, spurious sources show no physical structure.

Dennis Crake

