Characterizing the Orbital Periods of Transiting Planetary Debris around White Dwarfs

Joseph Guidry¹, JJ Hermes¹, Zach Vanderbosch², et al. ¹Boston University, ²Caltech

BOSTON UNIVERSITY

Image Credit: Mark A. Garlick

Recap: the tidal disruption model

Phase 1: Dynamical Scattering

Surviving planetary systems explain white dwarf pollution

Disk Evolution

 $R_{\rm TD} \sim 1 R_{\odot} \leftrightarrow \sim 4 \text{ hr orbit}$

Erik Dennihv's PhD Dissertation

WD1145+017: Transits from planetary debris

WD1145 shows deep, irregular transits that repeat every 4.5 hours.
Attributed to a disintegrating, tidally disrupted minor planetary body.

Vanderburg+ 2015; Gänsicke+ 2016 Image Credit: Mark A. Garlick

Transiting debris: zoo of light curve morphologies

Vanderburg+ 2015, Vanderbosch+ 2020, Guidry+ 2021, Vanderbosch+ 2021, Farihi+ 2022

Only 4 systems have measured orbital periods

Orbital periods allow us to characterize transiting WDs

- Do transiting WDs show different properties as a function of orbital period or age?
- 2) What does that say about the role of collisions in the evolution of the debris?

Eccentric, recently tidally disrupted debris?

Age?

Older, less eccentric, more evolved debris?

WD1054-226 - Repeating transits at 25.02 hr

- → Continuous, nonstop transit events
- → Transits phase together at P = 25.02 hr

Farihi+ 2022

Periodograms revealed WD1054's period

We can't always rely on TESS!

Is there an alternative period-finding tool that can compliment Fourier techniques?

2.6 hr rotation period from LSP? In line with measured WD rotation periods (Hermes+ 2017d)

Phase Dispersion Minimization

→ Seeks the period that minimizes the path length of the light curve when folded over it (Stellingwerf 1978)

$$\Theta = s^2/\sigma^2$$

- → s² is the weighted average of the path lengths s1, s2, s3
- \rightarrow σ^2 is the path length of the original light curve

Shorter path length, better period

Phase Dispersion Minimization

PDM of WD1054's TESS light curve

PDM of WD1054-226 follow-up

But are all the minima "real"?

Takeaways

- 1) White dwarfs showing transits from planetary debris are a nascent **class** of remnant planetary systems
- 2) Only four of these systems have measured orbital periods to date
 - → There is a dichotomy of short- (~hours, less eccentric) and long- (~months, highly eccentric) periods
- 3) Phase dispersion minimization is a promising technique to measure new orbital periods that have eluded detection

Thank you!! 🙂

