THE PROGENITOR ENVIRONMENTS OF CALCIUM-RICH TRANSIENTS

Wynn Jacobson-Galán (he/him) NSF Graduate Fellow, UC Berkeley Advisor: Raffaella Margutti Website: <u>wynnjacobsongalan.com</u>

Overview

Credit: NOIRLab

LIGHT CURVE EVOLUTION

Characteristics:

- ★ M_{peak} : -15.5 to -16.5mag
- ★ $t_r \le 15$ days
- ★ Fast decline after peak $(\Delta m_{15} = 1.8 2.0 \text{ mag})$

Double-peaked Events:

- ★ 2021gno, 2021inl, 2019ehk, iPTF16hgs, 2018lqo
- ★ Rise in ~1 day, declines in ~6 days
- ★ Emission from shock cooling or CSM interaction

HOST ENVIRONMENTS

Characteristics:

- ★ Variety of host morphology and offsets
- ★ Preference to locations of low star formation
- ★ Pre-explosion imaging of SN 2019ehk only allows for WD systems and $M_{\star} < 10 \text{ M}_{\odot}$ (unlikely)

(De+ 2020)

(lrani+ 2022)

E

Overview

Optical/UV

Environment

Conclusions

SPECTROSCOPIC EVOLUTION

Characteristics:

★ Type I spectra + Helium (sometimes)

- ★ Velocities: 6000 11,000 km/s
- ★ Strong Calcium features

[Ca II] / [O I] > 2

"Calcium-rich" -> "Calcium-strong"

Shen+ 2019

"FLASH" SPECTROSCOPY

SN 2019ehk at 1.5 days post-explosion

surrounding progenitor of a Ca-rich SN

Environment

Conclusions

OPTICAL+UV+IR EVOLUTION

Proposed Progenitor Channels:

- ★ Stripped-envelope massive stars
- \star WD disruption by NS or BH

- ★ Low mass WD merger
- ★ WD He-shell detonation

6

Overview

Environment

Conclusions

CALCIUM-RICH X-RAY PHASE SPACE

- ★ No observations at t < 20 days
- SNe 2019ehk & 2021gno are the only Ca-rich transients with X-ray detections
- ★ Luminous, fast-fading X-rays detected by Swift-XRT
- ★ Chandra provided deepest X-ray observation of Ca-rich SN
- ★ Indicates shock interaction with confined CSM

CALCIUM-RICH RADIO PHASE SPACE

- ★ t < 20 days is unconstrained
- ★ Deep upper limits in SNe 2019ehk & 2021gno
- ★ Low density medium at $\geq 10^{16}$ cm
- ★ Mass-loss model: $\dot{M} < 10^{-5} M_{\odot} \text{yr}^{-1} (\Gamma \beta \approx 0.1c)$

Conclusions

SHOCK COOLING EMISSION

- ★ Shock breakout into extended material with radius and mass
- ★ Material expands and cools down, emitting photons
- ★ Model emission in double-peaked events

(WJG, Venkatraman+ 2022b)

(Venkatraman+ 2022, in prep)

https://github.com/padma18-vb/shock-cooling-curve

PRE-EXPLOSION ENVIRONMENT

- ★Direct probe of circumstellar environment in the last ~days before explosion
- ★Constrains progenitor composition & mass-loss

CSM in SN 2019ehk:

- Composition: H- + He-rich
- Velocities: ~500 km/s
- Mass: $\sim 7 \times 10^{-3} M_{\odot}$
- Radius: $\leq 10^{15}$ cm

SCE + X-rays + Flash Spectroscopy + Radio:

X-Ray/Radio

Environment

Conclusions

WHAT HAVE WE LEARNED?

X-rays + radio + flash spectra are direct probes of mass-loss

Ca-rich SNe can emit X-rays

WHERE DO WHITE DWARFS FIT IN?

Ca-rich SNe progenitors lose mass in their final months Many Ca-rich SNe are double-peaked -> SCE

Calcium-rich Material X-ray Emitting Region

Credit: Aaron M. Geller, Northwestern University IT

QUESTIONS?

Referenced Papers:

- 1) SNe 2021gno & 2021inl: arXiv 2203.03785
- 2) SN 2019ehk main paper: arXiv 2005.01782
- 3) Late-time Ca-rich evolution: arXiv 2010.15863
- 4) Ca-rich SNe from He-shell detonations: arXiv 1910.05436

EXTRA SLIDES

Discovery

Pre-Explosion

Physical Model

EXTRA SLIDES

EXTRA SLIDES

LIGHT CURVE EVOLUTION

Extremely late-time follow-up:

- ★ Very few Ca-rich imaged at >250 days
- ★ 2019ehk has first multi-color late-time light curve
- ★ Constrains:
 - 1. explosion properties
 - 2. power source
 - 3. progenitor system

SN 2019ehk consistent with WD progenitor

COMPARISONS

Type IIb SN Comparison

1

1

