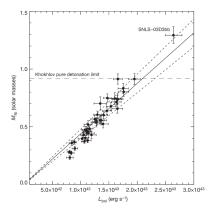
Continuous gravitational wave observations to understand nature of compact objects

Surajit Kalita University of Cape Town

Amanda Weltman (UCT), Banibrata Mukhopadhyay (IISc), Tushar Mondal (ICTS), Tomasz Bulik (Warsaw), Christopher A. Tout (Cambridge)

White Dwarfs from Physics to Astrophysics, Nov. 14-17, 2022

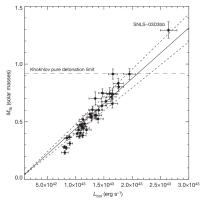
Surajit Kalita (UCT)


Gravitational waves from compact objects

Nov. 15, 2022 1/23

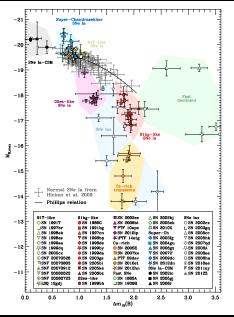
- Super-Chandrasekhar white dwarfs
- Fast radio bursts
- White dwarf pulsars

Peculiar type la supernovae


- Recent observations show some peculiar **SNe Ia** with extremely **high luminosity**.
- Their light curves also show slightly different trend.
- $L \propto M_{\rm WD}c^2 + mv^2 \implies$ $M_{\rm WD} \approx 2.1 - 2.8 M_{\odot}.$
- Chandrasekhar mass-limit is violated.
 - Rotation, magnetic field, modified theory of Einstein's gravity, noncommutative geometry, etc.

Howell et al. Nature 443 (2006) 308

Peculiar type la supernovae


- Recent observations show some peculiar **SNe Ia** with extremely **high luminosity**.
- Their light curves also show slightly different trend.
- $L \propto M_{\rm WD}c^2 + mv^2 \implies$ $M_{\rm WD} \approx 2.1 - 2.8 M_{\odot}.$
- Chandrasekhar mass-limit is violated.
 - Rotation, magnetic field, modified theory of Einstein's gravity, noncommutative geometry, etc.

Howell *et al.* Nature 443 (2006) 308

Is it possible to detect them directly?

Peculiar type la supernovae

 Peculiar SNe la are important as they might affect the standard candle.

S. Taubenberger (2017)

• Fast radio bursts (FRBs) are bright radio transient events.

- Fast radio bursts (FRBs) are bright radio transient events.
- They are observed for fraction of a second duration.

- Fast radio bursts (FRBs) are bright radio transient events.
- They are observed for **fraction of a second** duration.
- Observed flux is $\mathcal{O}(Jy)$.

- Fast radio bursts (FRBs) are bright radio transient events.
- They are observed for **fraction of a second** duration.
- Observed flux is $\mathcal{O}(Jy)$.
- They mostly have extragalactic origin except for FRB 200428.

- Fast radio bursts (FRBs) are bright radio transient events.
- They are observed for **fraction of a second** duration.
- Observed flux is $\mathcal{O}(Jy)$.
- They mostly have extragalactic origin except for FRB 200428.
- So far $\mathcal{O}(10^3)$ FRBs have been detected.

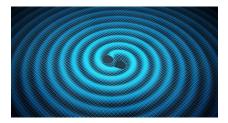
- Fast radio bursts (FRBs) are bright radio transient events.
- They are observed for **fraction of a second** duration.
- Observed flux is $\mathcal{O}(Jy)$.
- They mostly have extragalactic origin except for FRB 200428.
- So far $\mathcal{O}(10^3)$ FRBs have been detected.
- Different models incorporating WDs, NSs, and BHs have been proposed.

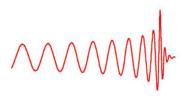
- Fast radio bursts (FRBs) are bright radio transient events.
- They are observed for **fraction of a second** duration.
- Observed flux is $\mathcal{O}(Jy)$.
- They mostly have extragalactic origin except for FRB 200428.
- So far $\mathcal{O}(10^3)$ FRBs have been detected.
- Different models incorporating WDs, NSs, and BHs have been proposed.
- Many of these theories incorporate mergers of compact objects.

- Fast radio bursts (FRBs) are bright radio transient events.
- They are observed for **fraction of a second** duration.
- Observed flux is $\mathcal{O}(Jy)$.
- They mostly have extragalactic origin except for FRB 200428.
- So far $\mathcal{O}(10^3)$ FRBs have been detected.
- Different models incorporating WDs, NSs, and BHs have been proposed.
- Many of these theories incorporate mergers of compact objects.
- Exact masses of some WD pulsars are unknown e.g. Mass of AR Scorpii = $[0.81 1.29]M_{\odot}$

Dichotomies/Shortcomings of current observations

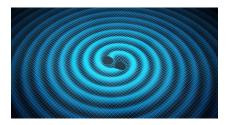
- Super-Chandrasekhar WDs are not observed.
- Progenitor theory of **FRBs** is not known.
- S Masses of some WD pulsars are not known.

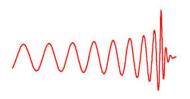

Dichotomies/Shortcomings of current observations


- Super-Chandrasekhar WDs are not observed.
- Progenitor theory of **FRBs** is not known.
- S Masses of some WD pulsars are not known.

Gravitational wave can be a plausible answer

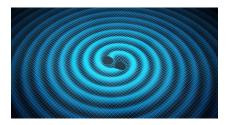
• Time-varying non-zero quadrupole moment \implies GWs.

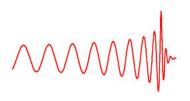

- Time-varying non-zero quadrupole moment \implies GWs.
- LIGO/Virgo have detected GWs from merger events.



Google Image

- Time-varying non-zero quadrupole moment \implies GWs.
- LIGO/Virgo have detected GWs from merger events.

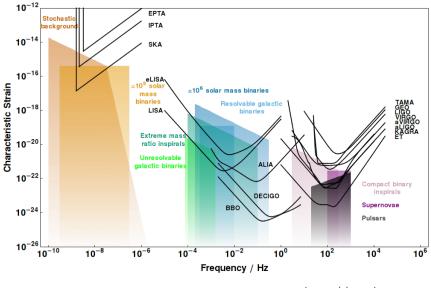




Google Image

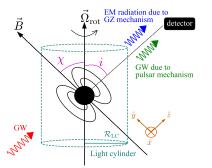
• Interesting objects, e.g. IMBH with $\mathcal{M}\approx 142\,\mathrm{M}_\odot$ (GW190521), NS or BH with with $\mathcal{M}\approx 2.7\,\mathrm{M}_\odot$ (GW190814) have been detected.

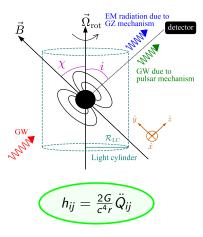
- Time-varying non-zero quadrupole moment \implies GWs.
- LIGO/Virgo have detected GWs from merger events.



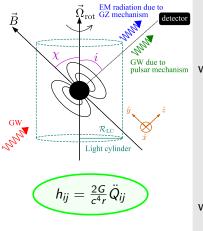
Google Image

- Interesting objects, e.g. IMBH with $\mathcal{M}\approx 142\,\mathrm{M}_\odot$ (GW190521), NS or BH with with $\mathcal{M}\approx 2.7\,\mathrm{M}_\odot$ (GW190814) have been detected.
- In future, LIGO/Virgo will be upgraded and around 2035, space-based mission LISA will be launched.


Sensitivity of different GW detectors


http://gwplotter.com/

Nov. 15, 2022 8 / 23


Magnetized WD/NS

Magnetized WD/NS

Magnetized WD/NS

$$egin{aligned} h_{+} &= ilde{A}_{+,1}\cos\left(\Omega_{ ext{rot}}t
ight) + ilde{A}_{+,2}\cos\left(2\Omega_{ ext{rot}}t
ight) \ h_{ imes} &= ilde{A}_{ imes,1}\sin\left(\Omega_{ ext{rot}}t
ight) + ilde{A}_{ imes,2}\sin\left(2\Omega_{ ext{rot}}t
ight) \end{aligned}$$

where

$$\begin{split} \tilde{A}_{+,1} &= \tilde{h}_0 \sin 2\chi \sin i \cos i, \\ \tilde{A}_{+,2} &= 2\tilde{h}_0 \sin^2 \chi (1 + \cos^2 i), \\ \tilde{A}_{\times,1} &= \tilde{h}_0 \sin 2\chi \sin i, \\ \tilde{A}_{\times,2} &= 4\tilde{h}_0 \sin^2 \chi \cos i, \end{split}$$

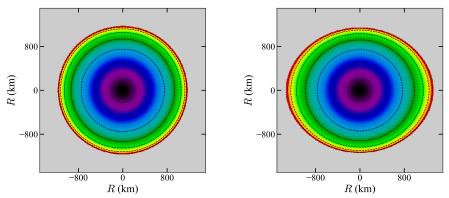
with

$$\tilde{h}_0 = \frac{G}{c^4} \frac{\Omega_{\rm rot}^2 (I_3 - I_1)}{r}$$

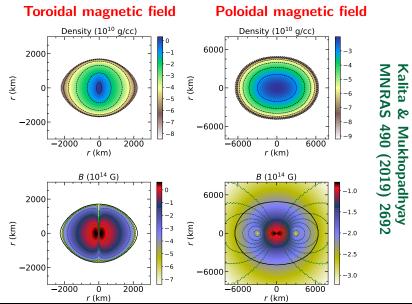
M. Maggiore: Gravitational Waves (Vol. 1)

Gravitational waves from compact objects

Rotating WDs/NSs


• Rotation can increase the mass of a WD/NS.

Rotating WDs/NSs


- Rotation can increase the mass of a WD/NS.
- Ostriker & Hartwick in 1968 showed that rotation alone can increase the mass of a WD up to $\sim 1.8 M_{\odot}$.

Rotating WDs/NSs

- Rotation can increase the mass of a WD/NS.
- Ostriker & Hartwick in 1968 showed that rotation alone can increase the mass of a WD up to $\sim 1.8 M_{\odot}$.
- Rotation turns a spherical WD to an oblate shaped WD.

Magnetized WDs

Surajit Kalita (UCT)

Gravitational waves from compact objects

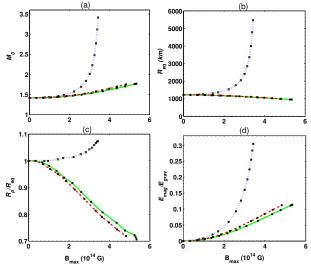
Nov. 15, 2022 11/23

Magnetized WDs/NSs

 Rotation ⇐⇒ oblate. Toroidal magnetic field ⇐⇒ prolate. Poloidal magnetic field ⇐⇒ oblate.

Magnetized WDs/NSs

- Rotation ↔ oblate. Toroidal magnetic field ↔ prolate.
 Poloidal magnetic field ↔ oblate.
- XNS code is used developed by Pili, Bucciantini, Del Zanna.


Magnetized WDs/NSs

- Rotation ⇔ oblate. Toroidal magnetic field ⇔ prolate.
 Poloidal magnetic field ⇔ oblate.
- XNS code is used developed by Pili, Bucciantini, Del Zanna.

• Advantage: Toroidal/poloidal/mixed magnetic field with uniform/differential rotation.

Magnetized WDs

U. Das & B. Mukhopadhyay, JCAP 05 (2015) 016

Surajit Kalita (UCT)

Gravitational waves from compact objects

EM Dipole and GW quadrupole radiation

• Pulsars emit both EM dipole and GW quadrupole radiations.

$$\begin{split} \mathcal{L}_{\rm D} &= \frac{2B_{\rm p}^2 \mathcal{R}_{\rm p}^6 \Omega^4}{3c^3} \left(1 + \sin^2 \chi\right), \\ \mathcal{L}_{\rm GW} &= \frac{2G}{5c^5} (I_3 - I_1)^2 \Omega^6 \sin^2 \chi \left(1 + 15 \sin^2 \chi\right), \end{split}$$

EM Dipole and GW quadrupole radiation

• Pulsars emit both EM dipole and GW quadrupole radiations.

$$\begin{split} \mathcal{L}_{\rm D} &= \frac{2B_{\rm p}^2 \mathcal{R}_{\rm p}^6 \Omega^4}{3c^3} \left(1 + \sin^2 \chi\right), \\ \mathcal{L}_{\rm GW} &= \frac{2G}{5c^5} (I_3 - I_1)^2 \Omega^6 \sin^2 \chi \left(1 + 15 \sin^2 \chi\right), \end{split}$$

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -L_{\mathrm{D}} - L_{\mathrm{GW}}.$$

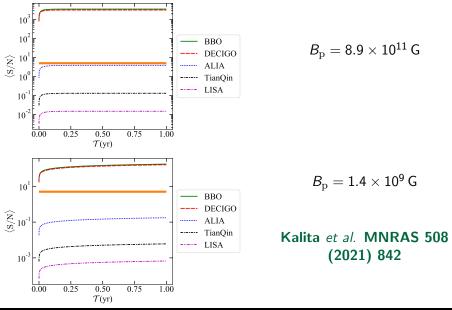
EM Dipole and GW quadrupole radiation

Energy conservation

$$\begin{aligned} \frac{\mathrm{d}(\Omega I_{z'z'})}{\mathrm{d}t} &= -\frac{2G}{5c^5} \left(I_3 - I_1\right)^2 \Omega^5 \sin^2 \chi \left(1 + 15 \sin^2 \chi\right) \\ &- \frac{2B_\mathrm{p}^2 \mathcal{R}_\mathrm{p}^6 \Omega^3}{3c^3} \left(1 + \sin^2 \chi\right) \end{aligned}$$

Angular momentum conservation

$$I_{z'z'} \frac{d\chi}{dt} = -\frac{12G}{5c^5} (I_3 - I_1)^2 \Omega^4 \sin^3 \chi \cos \chi - \frac{B_p^2 \mathcal{R}_p^6 \Omega^2}{3c^3} \sin 2\chi$$

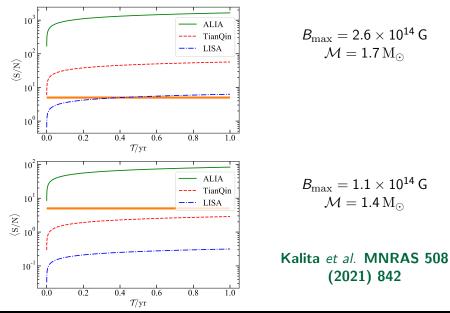

SNR of GWs from magnetized WDs

$$\mathrm{S/N} = \sqrt{\mathrm{S/N}_{\Omega}^2 + \mathrm{S/N}_{2\Omega}^2}\,,$$

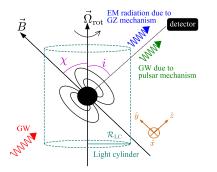
where

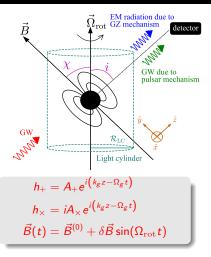
$$\langle \mathrm{S/N}_{\Omega}^2 \rangle = \frac{\sin^2 \zeta}{100} \frac{h_0^2 T \sin^2 2\chi}{S_\mathrm{n}(f)}, \quad \langle \mathrm{S/N}_{2\Omega}^2 \rangle = \frac{4 \sin^2 \zeta}{25} \frac{h_0^2 T \sin^4 \chi}{S_\mathrm{n}(2f)}.$$

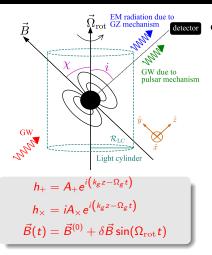
GWs from highly magnetized WDs (poloidally dominated)



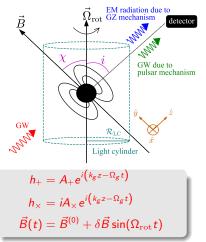
Surajit Kalita (UCT)


Gravitational waves from compact objects


Nov. 15, 2022 17 / 23

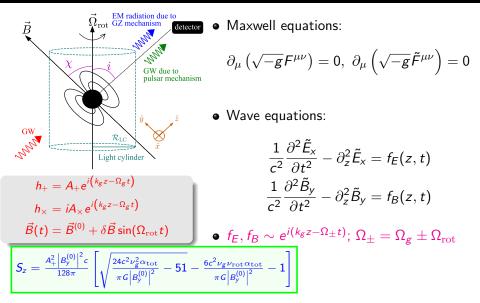

GWs from highly magnetized WDs (toroidally dominated)

Surajit Kalita (UCT)

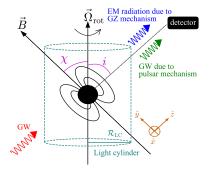


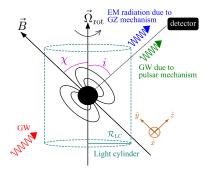
• Maxwell equations:

$$\partial_{\mu}\left(\sqrt{-g}F^{\mu\nu}\right) = 0, \ \partial_{\mu}\left(\sqrt{-g}\tilde{F}^{\mu\nu}\right) = 0$$

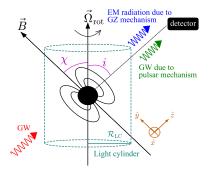

• Maxwell equations:

$$\partial_{\mu}\left(\sqrt{-g}F^{\mu\nu}\right) = 0, \ \partial_{\mu}\left(\sqrt{-g}\tilde{F}^{\mu\nu}\right) = 0$$

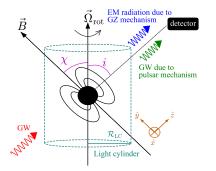

Wave equations:


$$\frac{1}{c^2} \frac{\partial^2 \tilde{E}_x}{\partial t^2} - \partial_z^2 \tilde{E}_x = f_E(z, t)$$
$$\frac{1}{c^2} \frac{\partial^2 \tilde{B}_y}{\partial t^2} - \partial_z^2 \tilde{B}_y = f_B(z, t)$$

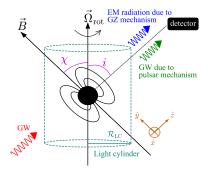
• $f_E, f_B \sim e^{i(k_g z - \Omega_{\pm} t)}; \ \Omega_{\pm} = \Omega_g \pm \Omega_{\rm rot}$



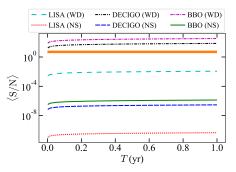
Kushwaha et al. arXiv:2202.00032



- Observed at 111 MHz.
- Pulse width $\delta = 5 \, \text{s}$.
- Peak flux = 0.22 Jy.



- Observed at 111 MHz.
- Pulse width $\delta = 5 \, \text{s}$.
- Peak flux = 0.22 Jy.
- $\mathcal{R}_{LC} = \frac{\delta c}{2} = 7.49 \times 10^{10} \, \mathrm{cm}.$



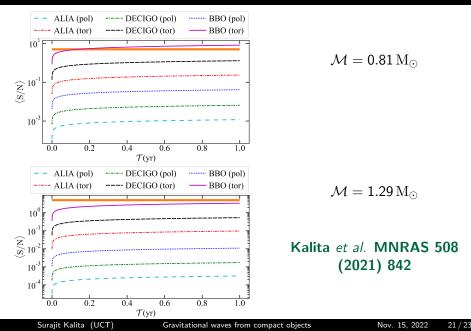
•
$$\Omega_{\rm rot} = \frac{c}{\mathcal{R}_{\rm LC}} = 0.4 \, {\rm rad} \, {\rm s}^{-1}.$$

• If $A_+ = 10^{-24}$,
 $\left| B_y^{(0)} \right| = 5.5 \times 10^8 \, {\rm G}.$

- Observed at 111 MHz.
- Pulse width $\delta = 5 \, \mathrm{s}$.
- Peak flux = 0.22 Jy.
- $\mathcal{R}_{LC} = \frac{\delta c}{2} = 7.49 \times 10^{10} \, \mathrm{cm}.$

• $\Omega_{\rm rot} = \frac{c}{\mathcal{R}_{\rm LC}} = 0.4 \, {\rm rad \, s^{-1}}.$ • If $A_+ = 10^{-24}$, $\left| B_y^{(0)} \right| = 5.5 \times 10^8 \, {\rm G}.$

Kalita & Weltman (under review) arXiv:2211.00940


- FRB 160920
- Observed at 111 MHz.
- Pulse width $\delta = 5 \, \text{s}$.
- Peak flux = 0.22 Jy.

•
$$R_{\rm LC} = \frac{\delta c}{2} = 7.49 \times 10^{10} \, {\rm cm}$$

Surajit Kalita (UCT)

Nov. 15, 2022 20 / 23

GWs from WD pulsar: AR Scorpii

- Magnetic fields and rotation can explain the existence of super-Chandrasekhar WDs.
- **GWs may probe the existence of these objects**; thereby restricting the gravity theory.
- Through GWs, we can better understand physics of the compact objects, including FRBs and WD pulsars.
- LISA can only detect highly magnetized WDs within 1 yr of detection period if they are within 100 pc radius.

References

- S. Kalita & A. Weltman, MNRAS (under review); arXiv:2211.00940
- S. Kalita, T. Mondal, C. A. Tout, T. Bulik & B. Mukhopadhyay, MNRAS 508 (2021) 842
- S. Kalita & B. Mukhopadhyay, ApJ 909 (2021) 65
- S. Kalita, B. Mukhopadhyay, T. Mondal & T. Bulik, ApJ 896 (2020)
 69
- S. Kalita & B. Mukhopadhyay, MNRAS 490 (2019) 2692

