Runaway Survivors from Thermonuclear Supernovae

Roberto Raddi

White Dwarfs from Physics to Astrophysics @ KITP – 11/17/2022

In collaboration with:

M. Hollands, D. Koester, JJ Hermes, B. Gänsicke, U. Heber, K. Shen, D. Townsley, A. Pala, J. Reding, O. Toloza, I. Pelisoli S. Geier, N. Gentile Fusillo, U. Munari, J. Strader

Outline

- * Properties of runaway thermonuclear supernova survivors
- * Formation and evolutionary scenarios
- * Future prospects
- * Summary

Extragalactic identifications

McCully et al. (2014), Nature, 512, 54; McCully et al. (2022), ApJ, 925, 138

Galactic supernovae

Outstanding stars

US 708: He-sdO (Hirsh et al. 2005; Geier et al. 2015)

J1240+6710: Oxygen WD (Kepler, Koester & Ourique 2016; Gänsicke et al. 2020)

LP 40-365 (GD 492) stars: three ONeMg stars (Vennes et al. 2017; Raddi et al. 2018a,b-2019; Hermes et al. 2021)

D6 stars: three objects (Shen et al. 2018; Bauer et al. 2022; Chandra et al. 2022)

	Radial Velocity	Proper motions	Distance	Space Velocity	M.W. bound
US 708	920 km/s	10 mas/yr	8.5 kpc	1160 km/s	No
J1240+6710	-180 km/s	210 mas/yr	0.44 kpc	470 km/s	Yes
LP 40-365	±500 km/s	40-200 mas/yr	0.62-2.0 kpc	400-850 km/s	Yes and no
D6	20-1000 km/s	200-250 mas/yr	0.85-2.5 kpc	1000-2000 km/s	No

Extreme kinematics Orange star: the Sun Green square: US 708 Purple diamond: J1240+6710 Three red triangles: LP 40-365 stars Three yellow circles: D6 stars

Extreme kinematics

Orange star: the Sun Green square: US 708 Purple diamond: J1240+6710 Three red triangles: LP 40-365 stars Three yellow circles: D6 stars

Gaia DR2 colour-magnitude diagram

Parallax means radius

Peculiar spectral appearence (US 708)

- ★ Teff = 47,000 K; logg = 5.7 (0.3 Msun)
- ★ Helium and nitrogen rich
- * Fast rotators (*vsini* = 115 km/s)

Peculiar spectral appearence (J1240+6710)

- ★ Teff = 20,500 K, 0.4 Msun
- * Oxygen dominated atmosphere
- * C, Ne, Na, Mg, Al, Si
- ★ H, He undetected

Peculiar spectral appearence (LP 40-365 and friends)

13

Peculiar spectral appearence (D6 stars)

- * Teff = 7500 K, logg = 5.5 (0.2-0.8 Msun)
- * Carbon-oxygen dominated atmosphere
- * Circumstellar material
- ★ Rotation period: 15.4 hr
- ★ H, He undetected
- ★ Linked to SN remnant (~10⁵ yr old)

Formation scenarios: thermonuclear supernovae

Binary ejection mechanism

* Core collapse supernova

* Mass loss and binary unbinding

(Blaauw 1961, Hills 1983, Tauris et al. 2015)

Credit: Andreas Irrgang (Dr Remeis Sternwarte) Shen et al. 2018, ApJ, 865, 15

Binary ejection mechanism

★ Double-degenerate progenitors \rightarrow

* Single-degenerate progenitors \rightarrow

17

Progenitor and explosion scenarios

Former donors in thermonuclear supernovae

- * US 708: double-detonation, He-star donor channel
 - Wang et al. 2009; Justham et al. 2009

- * D6 stars: double-detonation occurring before merger
 - Shen et al. 2017, 2018a,b

Former WD-accretors in thermonuclear supernovae

- ★ J1240+6710: double-detonation, partial burning, low-Ni production, accretion of thick helium shell
 - Polin et al. 2019

- * LP 40-365: deflagration, single degenerate donor, partial burning
 - SN lax: Jordan et al. 2012; Kromer et al. 2013, 2015; Fink et al. 2014
 - thermonuclear electron-capture SN (tECSN): Jones et al. 2016, 2019

Abundance pattern of LP 40-365 and friends

Abundance pattern of LP 40-365 and friends

Comparison with J1240+6710

Gänsicke et al. 2020, MNRAS, 496, 4079

23

Atmospheric vs bulk composition

Evolution and open questions

- ★ Long evolutionary timescales
- * Heavy elements in the atmosphere
- * Progenitors and ejection velocities
- ★ Velocity distribution

Bauer et al. 2019, ApJ, 887, 68

New candidates and "contaminants"

★ Candidate supernova survivors

- MW-bound US 708 twin in Geier et al. (2015)
- MW-unbound LP 40-365 twin in Raddi et al. (2019)
- Two hotter metal-rich stars (Raddi et al. 2019; Fantin et al. 2021)
- ***** Very likely contaminants
 - LP 29-31 (DQ; Ruffini & Casey 2019; Kawka et al. 2020)
 - WD 0810-353 (DAH; de la Fuente Marcos et al. 2022)

Where are the new candidates

Summary

- * Eight well characterized supernova survivors
- * Variety of thermonuclear supernova progenitors and explosion mechanisms
 - single and double-degenerates
 - double-detonation, deflagration
- * Need for improved analysis and modelling of future/past evolution
- * More discoveries to come from multi-fibre spectroscopic surveys