

Degeneracy of the white-dwarf mass estimation in magnetic cataclysmic variables

Claudia V. Rodrigues

National Institute for Space Research - Brazil

<u>claudia.rodrigues@inpe.br</u>

CATACLYSMIC VARIABLES

MAGNETIC CATACLYSMIC VARIABLES (MCVs)

- In magnetic cataclysmic variables
 - the white-dwarf magnetic field plays a role in defining the accretion geometry
 - the mass flow reaches the white dwarf through a magnetic column

MAGNETIC CATACLYSMIC VARIABLES (MCVs)

- In magnetic cataclysmic variables
 - the white-dwarf magnetic field plays a role in defining the accretion geometry
 - the mass flow reaches the white dwarf through a magnetic column
- post-shock region
 - * a density enhancement in the magnetic column near the white-dwarf surface due to a shock
 - Main emission source in X-rays

https://heasarc.gsfc.nasa.gov/docs/objects/cvs/cvstext.html

OBTAINING THE WD MASS IN MCVS

• In a seminal work, Aizu (1973) showed that the gravitational energy of the mass flow is transformed in thermal energy in the post-shock region.

$$GM/R \sim kT$$

• Therefore, the post-shock region temperature depends basically on the WD mass.

$$T_b = (3/8) (GMm_H \mu/kR),$$

• As the main emission process in X-rays is bremsstrahlung and it depends mainly on the temperature, the bremsstrahlung temperature is a proxy of the WD mass

Belloni, CVR+ 2021

The X-ray spectrum can be used to estimate the WD mass in MCVs (e.g. Suleimanov+2019)

REFINING THE PROBLEM

- Temperature and density are not homogeneous in the post-shock region
 - * the observed X-ray spectrum should reflect these profiles

Figure 2. Relative temperature (solid black, left axis) and density (dashed blue, right axis) of the post-shock region, in an Aizu-type accretion column, normalized to the respective values at the shock.

A code to model optical and X-ray emission of polars

- Post-shock region modelling
 - * radiative transfer
 - ◆3D region
 - **+** Emission
 - cyclotron (optical emission)
 - bremsstrahlung (X-rays)
 - ◆ Photo-absorption
 - Internal and interstellar

- density and temperatures profiles
 - based on proper solution of the hydrodynamical equations

Costa & CVR 2009
Silva, CVR + 2013
Belloni, CVR+2021

X-ray spectrum degeneracy

X-RAY SPECTRUM DEGENERACY

Model	$M_{ m WD}$ (M $_{\odot}$)	$B_{ m p}$ (MG)	$\dot{M}_{\rm WD}$ $(10^{-10} {\rm M}_{\odot} {\rm yr}^{-1})$	$S_{\rm b}$ $(10^{16}{\rm cm}^2)$	$\dot{m}_{\rm b}$ (g s ⁻¹ cm ⁻²)	β (°)	$R_{ m th}$ $(R_{ m WD})$	$H_{ m sh}$ $(R_{ m WD})$	T _{sh} (keV)	$\rho_{\rm sh}$ $(10^{-9}{\rm gcm}^{-3})$	$\langle T \rangle$ (keV)
Spectrum 1											
1a	1.35	29	0.50	1.58	0.20	48	1.80	0.0146	83	0.92	7.7
1b	1.18	21	0.39	1.66	0.15	45	1.99	0.0217	45	0.93	7.7
1c	1.06	63	15.85	8.74	1.14	50	1.72	0.0057	29	9.25	7.4
1d	0.74	141	15.84	4.05	2.47	27	4.82	0.0019	25	21.46	7.1
Spectrum 2											
2a	1.29	1	15.85	1.30	7.69	54	1.52	0.0424	43	45.68	28.9
2b	1.03	68	63.10	0.68	58.93	28	4.48	0.0036	49	365.66	28.5
2c	0.94	26	0.63	0.11	35.54	14	18.35	0.0057	48	221.45	29.6
2d	0.87	44	3.98	0.03	95.38	2	1136.27	0.0019	43	633.39	27.4

The same X-ray spectrum can be obtained using very different parameters

BREAKING THE DEGENERACY

- Fitting absolute counts
- Variation of the emission with WD spin phase
 - X-rays
 - optical flux
 - optical polarization

SELF-ECLIPSE + ABSORPTION IN THE PRE-SHOCK REGION

SELF-ECLIPSE + ABSORPTION IN THE PRE-SHOCK REGION

Fitting observations

AM HER - SPECTRUM SHAPE

AM HER - SPECTRUM SHAPE

- XMM data
 - +ObsId 0744180801
 - ***** 2015 April
 - **◆** Schwope+2020

AM HER - SPECTRUM SHAPE

- XMM data
 - + ObsId 0744180801
 - **◆** 2015 April
 - **◆** Schwope+2020

- Fit procedure
 - Mwd is kept fixed
 - other parameters can vary (B, Mdot, ...)

FITTING ALSO THE SPECTRUM COUNTS - AM HER

- Bad fitting...
 - * Free additional parameter in the fitting?
 - * Line emission contribution?
 - * Two post-shock regions?
 - * Additional absorption at soft energies?

- Distance from Gaia DR3
- * d = 87.9 (Bailer-Jones+2021)

- Simultaneous modeling of X-ray and optical data
- Observations
 - * X-ray spectrum XMM
 - optical light and polarization curves -OPD

- Simultaneous modeling of X-ray and optical data
- Observations
 - * X-ray spectrum XMM
 - optical light and polarization curves -OPD

Preliminary results

Spin phase

Preliminary results

SPARC4 - FIRST LIGHT

- Simultaneous Polarimeter And Rapid Camera in 4 bands
 - simultaneous imaging in four bands (griz SDSS)
 - * 5.6 x 5.6 arcsin sq.
 - polarimetry as an option
 - * sub-second time resolution
- at 1.6-m telescope of Observatório do Pico dos Dias (Brazil)
- First light on 2022 Nov 4th

CONCLUSIONS

- The estimation of Mwd using X-ray spectra should be done with care
- It is desirable to use as many observational constraints as possible
- Cyclops is a nice tool to study accretion in magnetic cataclysmic variables

Acknowledgements

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq): Proc. 310930/2021-9
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.
This research was supported in part by the National Science Foundation under PHY-1748958.