STELLAR EVOLUTION AND ITS IMPACT ON THE PROPERTIES OF WHITE DWARFS

Maurizio Salaris

White Dwarfs

The mass of the H-exhausted core at Heburning ignition determines the innermost CO stratification

The mass increase of the H-exhausted core during early-AGB and TP-AGB essentially determines the final WD mass (interplay mass loss law, 2nd and 3rd dredge ups)

e.g. Schwarzschild and Harm (1969), Castellani et al. (1971), Gabriel et al. (2014), Constantino et al. (2015), Paxton et al. (2019)

When $Y_c < 0.7$

'semiconvection'

e.g. Castellani et al. (1985)

Constantino et al. (2015)

CONSEQUENCES FOR WD CO ABUNDANCE PROFILES

Straniero et al. (2003)

	$ au_{ m He}$	X _C	Xo	Central abundances
BSM	88	0.42	0.56	$3M_{\odot}$ solar composition
SM	145	0.19	0.79	
PSM	134	0.40	0.58	
HOM	153	0.42	0.56	
LOM	139	0.38	0.60	

BSM =no oversh., no semiconv.

SM and PSM = semiconv. + 2 different methods to suppress BPs

HOM = overshooting 1Hp (BP suppressed as in SM)

LOM= overshooting 0.2Hp (BP suppressed as in SM)

Chemical stratification at the onset of AGB thermal pulse phase

Straniero et al. (2003)

¹²C(α , γ)¹⁶O reaction rate

2 $^{12}\mathsf{C}(lpha,\gamma)^{16}\mathsf{O}$ This Work Reaction Rate / NACRE Rate Kunz et al. 2002 Angulo et al. 1999 (NACRE) 1.51 0.5Shell Core Explosive Burning Burning Burning 0.110 1

Temperature (GK)

DeBoer et al. (2017)

DeBoer et al. (2017)

Percentage difference of C/O abundance ratios (DeBoer-Kunz rates)

The thermal pulses

The thermal pulses

Super-AGB evolution and ONe WDs

Off-centre carbon ignition in a weakly-degenerate core (T \sim 6.4 X 10⁸ K)

e.g. Garcia-Berro et al. (1997), Siess (2006), Denissenkov et al. (2013) Chen et al. (2014), Doherty et al. (2015), Farmer et al. (2015),

Chemical stratification ONe-core WDs

But it is possible that C-burning does not reach the centre (uncertainties in the reaction rates and mixing treatment). In that case, the inner core composition would be roughly that of a CO-core WD

Food for thought

KIC 08626021

DB white dwarf

This stratification cannot be reproduced by stellar evolution models

(De Geronimo et al. 2019)

