Properties of white dwarfs in a semi-analytic Milky Way model based on Gaia DR3

Akash Vani (Andreas Just, Kseniia Sysoliatina)

ARI, ZAH, Heidelberg University

White Dwarfs from Physics to Astrophysics KITP, Santa Barbara 17.11.2022

JJ model framework

What is it and what does it do?

- Semi-analytic chemo-dynamic model (Just & Jahreiß 2010)
- Iteratively solve Poison Boltzmann eq. to form a self-consistent pair of $\{\Phi(z),\rho(z)\}$
- Excellent tool for population synthesis studies

Assumptions of the MW system

- Steady state
- Axisymmetric and plane symmetric
- Flattened
- No explicit radial migration
- Consists of isothermal sub-populations

https://github.com/askenja/jjmodel

Limitations

- Not applicable to the Galactic bulge
- Imprecise for very young stellar populations
- Needs to be averaged over large volumes

https://jjmodel.readthedocs.io/ A Sysoliatina & Just, A&A 666, A130, 2022

Stellar assemblies setup

(Sysoliatina & Just 2022)

- Global model, 4 kpc < R < 14 kpc
- Local model, **solar neighbourhood** 🗸
- **PARSEC**/MIST/BaSTI isochrones of metallicity -2.59 < [Fe/H] < 1.47 (50-Myr time resolution)
- Populate 3D age-metallicity-mass (=stellar assembly) parameter space
- Number density depends on SFR and IMF
- Deviation in total number of stars based on EDR3:
 - +0.2 % against a 25 pc volume (CNS5, Golovin+22)
 - +2.2 % against a 60 pc volume (GCNS, Smart+21)
- Result: A well calibrated model for MS+Giant stars able to make excellent predictions
- WDs not included in the JJ model (yet)

WD stellar assemblies setup

- **BaSTI** WD isochrones of solar metallicity for the whole MS metallicity range with a 50-Myr time resolution (Salaris+22)
- WDs used: **DA carbon oxygen**

Assumptions

- Lifetime of main sequence stars is modelled by a **two slope power law**
- IMF: Modified **4-slope BPL** (Kroupa+93, Sysoliatina & Just 21)
- SFR: Smooth declining continuum with **two SFR bursts** within 4 Gyr (default, Sysoliatina & Just 21)
- IFMR: Cummings+18

Data selection

The Fifth Catalogue of Nearby Stars

- CNS5 (Golovin+22): volume limited sample of all stars within 25 pc
- Also includes a volume complete WD sample

White dwarf 60 pc sample

- WD6o (Vani+22, in prep): **60 pc** volume complete WD sample based on DR3
- Derived using techniques from CNS5

Data to model comparison

CNS5 – Golovin+22

Data to model comparison

WD60 – Vani+22, in prep

WDLF: Data and model prediction

- Number density of WDs:
- $25pc = (4.03 \pm 0.25) \times 10^{-3} WDs pc^{-3}$
- $60pc = (4.46 \pm 0.07) \times 10^{-3} WDs pc^{-3}$

- Choice of IMF (and SFR) affects the number • density of all stars
- Low and high mass slope of Kroupa+93 and Chabrier03 is inconsistent with MS+Giant stars

18

Model prediction_{*}

* Calibration required for more precise predictions

Model prediction

* Calibration required for more precise predictions

Model prediction

* Calibration required for more precise predictions

DBWDs?Work in progress ...

*Maximum age of DB WD isochrones is 5.7 Gyr

Takeaway...

Conclusion

- JJ model is rigorously calibrated for MS+Giant stars
- Previous assumptions of calibration fails in the presence of WDs
- JJ model predicts more WDs in 60 pc by ~11%
- IMF slope between ~1 8 M_{\odot} needs to be adapted
- Simultaneous calibration of the IMF and SFR is required in the presence of MS+Giants+WDs

Outlook

- Include DB and Q branch WDs
- Test different IFMRs and WD models
- Examine the age-mass distribution of WDs

Thank you

Akash Vani

(Currently at MPA, Garching)

Astronomisches Rechen-Institut Mönchhofstr. 12-14 69120 Heidelberg Germany

- 🔀 <u>akashdvani@gmail.com</u>
- in <u>akash-vani</u>
- A-Vani
- <u>https://a-vani.github.io</u>
- D <u>0000-0002-3370-8086</u>

References

JJ model: <u>paper I</u>, <u>paper II</u>, <u>paper III</u>, <u>paper IV</u>, <u>paper V</u>

WD60: Vani+22, in prep

CNS5: <u>Golovin+22</u>

- GCNS: Smart+21
- PARSEC isochrone: Bressan+12
- IFMR: <u>Cummings+18</u>

BaSTIWD isochrones: <u>Salaris+22</u>

Astronomy & Astrophysics manuscript no. cns5_paper_accepted November 4, 2022 ©ESO 2022

The Fifth Catalogue of Nearby Stars (CNS5)

Alex Golovin^{1*}, Sabine Reffert¹, Andreas Just², Stefan Jordan², Akash Vani², and Hartmut Jahreiß²

¹ Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany

² Astronomisches Rechen-Institut, Zentrum f
ür Astronomie der Universit
ät Heidelberg, M
önchhofstr. 12–14, 69120 Heidelberg, Germany

e-mail: agolovin@lsw.uni-heidelberg.de

Version: November 4, 2022